Hermitian Measures in *W*******J***-Algebras in Hilbert Spaces with Conjugation†**

Marjan Matvejchuk1

Received December 8, 1999

1. INTRODUCTION

In this paper we continue the description of measures on logics of projections in Hilbert spaces with conjugation (Matvejchuk, 1998).

Let *H* be a complex Hilbert space with the inner product (\cdot, \cdot) . We will denote by *S* the unit sphere in *H*. Let *J* be an operator of *conjugation* in *H* $[i.e., J^2 = I; (Jx, Jy) = (y, x), J(\lambda x + \beta y) = \overline{\lambda}Jx + \overline{\beta}Jy, \forall x, y \in H, \forall \lambda,$ $\beta \in \mathbb{C}$. A vector $x \in H$ is said to be *J-real* if $Jx = x$. The vectors $x_{\Re} =$ $1/2(x + Jx)$ and $x_3 := 1/2i(x - Jx)$ [= −1/2(*ix* + *J ix*)] are *J*-real, $\forall x \in$ *H*, and $x = x_{\Re} + ix_{\Re}$ The set H_{\Re} of all *J*-real vectors is a real Hilbert space with respect to the inner product (\cdot, \cdot) . Let S_{\Re} denote the set $S \cap H_{\Re}$. Put $\langle x, y \rangle := (Jx, y)$. Let $B \in B(H)$. The operator $B^0 \in B(H)$ such that $\langle Bx, y \rangle =$ $\langle x, B^0 y \rangle$, $\forall x, y \in H$, is called a *J-adjoint*. It is clear that $B^0 = JB^*J$ [= (*JBJ*)^{*}], $(BA)^0 = A^0B^0$, and $A \in B(H)$ is *J-selfadjoint* $\Leftrightarrow A = JA^*J$. An operator $A \in B(H)$ *B*(*H*) is said to be *J-real* if $JAJ = A$. Note that $A_{IJK} := 1/2(A + JAJ)$ and $A_{J\mathfrak{F}} := 1/2i(A - JAJ)$ are *J*-real operators and $A = A_{J\mathfrak{R}} + iA_{J\mathfrak{F}}$.

777

0020-7748/00/0300-0777\$18.00/0 q 2000 Plenum Publishing Corporation

Let *M* be a real semifinite *W**-algebra of *J*-real operators containing no finite central summand in a complex Hilbert space *H* with conjugation *J*. Denote by *P* the quantum logic of all *J*-orthogonal projections in the von Neumann algebra $\mathcal{N} = \mathcal{M} + i\mathcal{M}$. Let $\mu: P \to R$ be a Hermitian measure. It is shown that there exists an unique *J*-self-adjoint ultraweakly continuous linear functional ψ on $\mathcal N$ such that $\mu(p) = \Re \psi(p), \forall p \in P$.

 † This paper is dedicated to the memory of Prof. Gottfried T. Rüttimann. † Research Institute of Mathematics and Mechanics, Kazan State University, Kazan, 420008, Russia; e-mail: marjan.matvejchuk@ksu.ru.

A von Neumann algebra $\mathcal N$ acting in *H* is called a *W***J*-algebra if $\mathcal N$ is closed with respect to the *J*-adjunction (i.e., $A_1 \in \mathcal{N}$ implies $A^0 \in \mathcal{N}$). A weakly closed real *-algebra $M \subset B(H)$ with $M \cap iM = \{0\}$ is said to be a *real* W^{*}-algebra. If *M* is a real W^{*}-algebra, then $N := M + iM$ is a von Neumann algebra. Let N be a W^* *J*-algebra. It is evident that the set M of all *J*-real operators in N is a real *W**-algebra. $B \in \mathcal{N}$ implies *JBJ* [= $(B^0)^*$] \in *N*. Hence $B_{J\Re}$, $B_{J\Im} \in \mathcal{N}$ and $\mathcal{N} = \mathcal{M} + i\mathcal{M}$.

Let M_s be the set of all self-adjoint operators in M . Then M_s is a Jordan algebra (=*JW*-algebra) with respect to the product $A \circ B := 1/2(AB + BA)$. The \mathcal{M}_s has type I (II, III) \Leftrightarrow the von Neumann algebra $\mathcal{N} = \mathcal{M} + i\mathcal{M}$ has type I (II, III) (Ayupov, 1986).

Let P $[=P(N)]$ denote the set of all *J*-self-adjoint (= *J*-orthogonal) projections ($=$ idempotents) from N. With respect to the standard relations, the ordering $p \leq g \Leftrightarrow p = gp (= pg) \Leftrightarrow pH \subseteq gH$, and the orthocomplementation $p \rightarrow p^{\perp}$:= *I* - *p*, the set *P* is a *quantum logic*. The set of all orthogonal projections in *P* is denoted by Π [= $\Pi(N)$]. It is clear that $p \in P$ is *J*-real \Leftrightarrow *p* \in Π . Hence $\Pi(B(H))$ is isomorphic to the lattice of all orthogonal projections on $H_{\mathfrak{R}}$.

2. THE STRUCTURE OF THE PROJECTIONS FROM *P*

Let $p \in P$; then $p^* \in P$. Let p_{or} be the orthogonal projection onto $pH \cap Q$ p^*H . Then $p_{or} \in \Pi$ and p_{or} is the greatest orthogonal projection with the properties $p_{or} \leq p$ (Matvejchuk, 1998). A projection $p \in P$ is said to be *properly skew* projection if $p_{or} = 0$. Let $p \neq p^*$. Then it is clear that p p_{or} is the properly skew projection. Let \mathcal{N}^{or} denote the set of all orthogonal projections from N .

Let $p \in P$. The positive part of $(p + p^*)$ will be denoted by $(p + p^*)_+$, and by e_+ will be denote the orthogonal projection onto $(p + p^*)_+H$. Then $e_+ p e_+ = \frac{1}{2}(p + p^*)_+$ (Matvejchuk, 1998). Put $e_- := I - e_+$. Now, denote by F_y the orthogonal projection onto *yH*, $\forall_y \in B(H)$.

We begin with an important formula on projections from *P*.

Proposition 1. Let N be a W^*J -algebra, $p \in P$, and let $e_{P}e_{+} = w|e_{P}e_{+}|$. be the polar decomposition for $e_{p}e_{+}$. Then $x := e_{+}pe_{+}(\geq e_{+})$ and $v := (1/2)e_{+}e_{+}$ *)<i>w* are *J*-real operators in N, and

$$
p = x + i\nu(x^2 - x)^{1/2} + i(x^2 - x)^{1/2}\nu^* - \nu(x - F_x)\nu^*
$$
(1)

Conversely, let $x \in \mathcal{N}$ be an arbitrary *J*-real operator such that $x \geq F_x$, and let $v \in \mathcal{N}$ be a *J*-real partial isometry with the initial projection F_x and the final (*J*-real) one *e* such that $e \perp F_x$. Then (1) defines a projection in *P*.

For the proof see Matvejchuk (1998).

To emphasize that *p* in (1) depends on *x* and *v*, we shall use the notation *p*(*x*, *v*) as well. It is easily seen that $||p(x, v)|| = ||2x - I|| = 2||x|| - 1$. The projection $p(te, v)$, where $t \in R$ and $e \in \Pi$, is said to be a *simple* projection. Let $S_p := F_x + F_y$, $\forall p = p(x, v) \in P$. Let us denote by P_β the set { $p(x, v)$ } $P: ||p(x, y)|| \leq \beta$. Let $x = \int \lambda d e_{\lambda}$ be the spectral representation for *x* (we assume the function $\lambda \to e_{\lambda}$ to be right continuous). Put

$$
x_n := \sum_{i \ge n} \frac{(i + 1/2)}{n} (e_{(i+1)/n} - e_{i/n}) + (e_1 - e_{1-}) \quad \text{and} \quad
$$

$$
v_i := v(e_{(i+1)/n} - e_{i/n})
$$

Let us mention one consequence of the formula (1).

Corollary 2.

$$
p(x_n, v) = \sum_{i \geq n} p\left(\frac{(i + 1/2)}{n} (e_{(i+1)/n} - e_{i/n}), v_i\right) + (e_1 - e_{1-})
$$

and $\lim \|p(x, y) - p(x_n, y)\| = 0.$

Obviously, $(\cdot, x)y \neq 0$ is a projection $\Leftrightarrow (x, y) = 1$. Let $(\cdot, x)y \neq 0$ be a projection. A routine computation shows that:

1. $(\cdot, x)y \in P(B(H)) \Leftrightarrow (\cdot, x)y = (\cdot, Jy^*)y^*$, where $y^* = (y, Jy)^{-1/2}y$. 2. $p_y := (\cdot, Jy)y \in P(B(H)) \Leftrightarrow (y_{\Re}, y_{\Im}) = 0$ and $||y_{\Re}||^2 - ||y_{\Im}||^2 = 1$. 3. Let $p \in P(B(H)), p \neq 0$. Then $(\cdot, Jy^*)y^* \leq p$, $\forall y \in pH: ||y_{\Re}|| \neq ||y_{\Re}||$.

Corollary 3. The logic *P*(*B*(*H*)) is atomistic.

Remark 4. (i) Let $p = p(x, y) \in P_\beta$ be a properly skew projection, $f \in$ $N^{\circ r}$, and $f \leq F_p$. Then there exists $g = g(z, w) \in P_\beta$ such that $F_z \leq F_x$, $F_g = g(z, w)$ $f, g \leq p$.

(ii) Let $p \in \Pi$, $f \in \mathcal{N}^{or}$, and $f \leq p$. Then there exists a properly skew projection $g \in P$ such that $F_g = f$, $g \leq P \Leftrightarrow$ there exists $f_0 \in \Pi$, $f_0 \leq p$, such that $\frac{1}{2}f_0 \le f_0 f f_0$ and $v^*v \le p - f_0$, where *v* is the partial isometry from the polar representation $f_0^{\perp} f_0^f = v | f_0^{\perp} f_0^f$.

Proof. (i) Let $f \leq F_p$, $f \in$ II. Then $JfJ \leq JF_pJ$. Let $f + JfJ =$ $\int \lambda e_{\lambda}$ be the spectral representation for $f + JfJ$. Put $e_+ := I - e_1$ and $e_- :=$ $I - e_+$. Let $e_- f e_+ = w_0 |e_- f e_+|$ be the polar representation for $e_- f e_+$. Then $v_0 = (1/i)w_0$ is a *J*-reality partial isometry. In addition, $e_+ f e_+ = e_+ f f J e_+$, y_0 $:= e_+ f e_+$ is a *J*-real operator, and $y_o > \frac{1}{2} e_+$. Put $x_o = y_o(2y_o - I)^{-1}$ and $g =$ $p(x_o, v_o)$. Then *g* is the suitable projection.

Lemma 5. Let N be a countably decomposable von Neumann algebra and let ϕ be a faithful normal state on N. Let $p = p(x, y) \in P_B$ be such that the spectrum of *x* is continuous in $(c, +\infty)$, where $c = \inf\{(x\kappa, \kappa): \kappa \in S \cap \mathbb{R}$

 e ₊ H }. Then for any natural *m* there exists a mutually orthogonal family ${p_i}_1^m \subset P_\beta$ such that $p = \sum p_i$ and $\phi(S_{p_i}) = (1/m) \phi(S_p)$, $\forall i$.

Proof. Let $x = \int \lambda d_e \$ be the spectral representation for *x* again. By the assumption on *x*, the function $\phi(e_{\lambda} + ve_{\lambda}v^*)$ is continuous on $(c, +\infty)$. Hence there exists $\{e_i\}_1^m \subset \Pi$ with the properties: (i) $\Sigma_1^m e_i = F_x$, (ii) $e_i x = xe_i$, $\forall i$, (iii) $\phi(e_i + ve_i v^*) = (1/m)\phi(S_p)$, $\forall i$. By the construction, $\{p(xe_i, ve_i)\}_1^m$ is a suitable family.

Remark 6. Let N be a countably decomposable continuous von Neumann algebra. Then assession of Lemma 5 is true for any $p \in P$.

3. INDEFINITE METRIC SUBSPACES IN *H*

Let $e \in \Pi$ ($0 \le e \le I$). The set $\mathcal{H}_e := eH_{\Re} \oplus ie^{\perp} H_{\Re}$ is a real Hilbert space with respect to the product (\cdot, \cdot) and $H = \mathcal{H}_e + i \mathcal{H}_e$. Let \overline{J} denote the restriction of *J* to \mathcal{H}_e . Clearly $\overline{J} = (e - e^{\perp})/\mathcal{H}_e$ and \overline{J} is a symmetry (i.e., $\bar{J}^2 = I$, $\bar{J} = \bar{J}^*$ in \mathcal{H}_e . Consequently, we have:

Every $b \in B(\mathcal{H}_e)$ can be uniquely extended to a bounded linear operator b_H on *H*, $(b_H)^* = (b^*)_H$, and if *p* is a bounded projection on \mathcal{H}_e , then p_H is a bounded projection, too. In addition, if a projection *p* is *J*-self-adjoint, then *p_H* is *J*-self-adjoint. Conversely, if $q \in P$ and $q\mathcal{H}_e \subseteq \mathcal{H}_e$, then $q\mathcal{H}_e$ is a \overline{J} self-adjoint projection.

With respect to the product $[x, y] := (Jx, y), \forall x, y \in \mathcal{H}_e$, the set \mathcal{H}_e is *a real indefinite metric space and* \overline{J} is a canonical symmetry with respect to the canonical decomposition $\mathcal{H}_e = \mathcal{H}_e^+[\dot{+}]\mathcal{H}_e^-$, where $\mathcal{H}_e^+ := eH_{\mathfrak{R}}$ and $\mathcal{H}_e^ := ie^{\perp} H_{\Re}$ (Azizov and Iokhvidov, 1989).

Let $p = p(x, y) \in P$. Put $e = F_x$ and $J_1 = p - p^{\perp} (=2p - I)$. According to the theory developed in Azizov and Iokhvidov (1989), the restriction of J_1 to \mathcal{H}_e (with $[\cdot, \cdot]$) is the canonical symmetry with respect to the canonical decomposition $\mathcal{H}_e = p\mathcal{H}_e$ [+] $p^{\perp}\mathcal{H}_e$.

Let M be a real W^{*}-algebra of *J*-real operators. Let us denote by N_e $[-\mathcal{N}_e(\mathcal{M})]$ the set ${B \in (\mathcal{M} + i\mathcal{M}) : B\mathcal{H}_e \subseteq \mathcal{H}_e}.$ Obviously \mathcal{N}_e is a real closed in the strong operator topology *-algebra. In addition, $B \in \mathcal{N}_e$ implies $B^0 \in \mathcal{N}_e$. \mathcal{N}_e is a *W***J*-algebra in the real indefinite metric space \mathcal{H}_e . Put P_e := $P \cap N_e$. Clearly, P_e is a quantum sublogic of *P*. The logic P_e is called a *hyperbolic* logic.

Let us denote by $P_e^+(P_e^-)$ the set of all $p \in P_e$ for which the subspace *p*^{\mathcal{H}_e is *positive* (i.e., $\forall z \in p\mathcal{H}_e$, $p ≠ 0$, [*z*, *z*] > 0), respectively, *negative*} (i.e., $\forall z \in p\mathcal{H}_e, z \neq 0$, $[z, z] < 0$). We will denote by P_e^{\pm} the set P_e^{\pm} or *P*_e. Note that $p \in P_e^+ \Leftrightarrow \overline{J}p \ge 0$ on \mathcal{H}_e and $p \in P_e^- \Leftrightarrow \overline{J}p \le 0$. For instance, $p(x, y) \in P_{F_e}^+$ and $p(x, y) \in P_{F_x}^-$. Let $\mathcal{N} = B(H)$. Then the projection $p_y = (\cdot, Jy)y \in P_e^+[(\cdot, Jy)y \in P_e^-] \Leftrightarrow y_{\Re} \in eH_{\Re}$ and $y_{\Re} \in e^{\perp}H_{\Re} \Leftrightarrow y_{\Re} \in P_e$ $e^{\perp}H_{\Re}$ and $y_{\Im} \in eH_{\Re}$). Every projection (Azizov and Iokhvidov, 1989) $p \in$ P_e is representable (not unique!) in the form $p = p_+ + p_-$, where $p_{\pm} \in p_{\epsilon}^{\pm}$.

Some Propositions on Projections in an Indefinite Metric Space

Let $\mathcal H$ be a Hilbert space (real or complex) with respect to the Hilbert product (\cdot, \cdot) . Let $Q^+(0 < Q^+ < I)$ be an orthogonal projection on $\mathcal H$ and *T* := 2*Q*⁺ − *I*, *Q*[−] := *I* − *Q*⁺. Fix the product [*x*, *y*] := (*Tx*, *y*). ∀*x*, *y* ∈ \mathcal{H} . \mathcal{H} is an indefinite metric space with the inidefinite metric $[\cdot, \cdot]$ and with the canonical symmetry \mathcal{T} . A *W**-algebra **A** (probably real) acting in \mathcal{H} is called a $W^*\mathcal{T}$ -algebra if $\mathcal{T} \in \mathbf{A}$. A $W^*\mathcal{T}$ -algebra **A** is said to be a W^*K algebra if projections Q^+ and Q^- are infinite with respect to **A**. Let \mathcal{P} $(\mathcal{P}^+, \mathcal{P}^-)$ denote the set of all T-self-adjoint (positive, negative) projections from **A**.

Let Q_1^+ be a maximal positive projection (Azizov and Iokhvidov, 1989) and $\mathcal{T}_1 := 2Q_1^+ - I$. Put $(x, y)_1 := [\mathcal{T}_1 x, y] \,\forall x, y \in \mathcal{H}$. By the definition, $\mathcal{TT}_1 \approx 0$) is an invertible operator. Hence there exist α , $\beta \in \mathbf{R}$ such that $\alpha l \leq \mathcal{T} \mathcal{T}_1 \leq \beta l$. This means that

$$
\alpha(x, x) \le (\mathcal{T}\mathcal{T}_1 x, x) = (x, x)_1 \le \beta(x, x), \qquad \forall x \in \mathcal{H}
$$
 (2)

Also we have

$$
|(x, x) - (x, x)_1| = |((I - \mathcal{T}\mathcal{T}_1)x, x)| \le ||I - \mathcal{T}\mathcal{T}_1|| ||x||^2
$$

= $||\mathcal{T} - \mathcal{T}_1|| ||x||^2 = 2||Q^+ - Q_1^+|| ||x||^2$, $\forall x \in \mathcal{H}$ (3)

Let $p \in \mathcal{P}^+$, $x = Q^+ p Q^+$, and $Q^- p Q^+ = w |Q^- p Q^+|$ be the polar decomposition for Q^-pQ^+ . The formula

$$
p = x + w(x^{2} - x)^{1/2} - (x^{2} - x)^{1/2} w^{*} - w(x - F_{x})w^{*}
$$

is an indefinite analogy for (1) with a similar proof.

Assume that $p \in \mathcal{P}^+$ is a simple projection in \mathcal{H} with product $(\cdot, \cdot)_1$, i.e., $p = te + (t^2 - t)^{1/2}(w - w^*) - (t - 1)ww^*$; here $t > 1$, $e \le Q_1^+$, and *w* is a partial isometry with the initial projection *e* and final one F_w , $F_w \le$ *I* - Q_1^+ in \mathcal{H} with $(\cdot, \cdot)_1$. It is clear that $pe - te = (t^2 - t)^{1/2}$ *w*, $ep - te =$ $-(t^2 - t)^{1/2}w^*$. Hence we may identify the minimal real ⁰-algebra $\mathcal{M}(e, p)$ generated by *e* and *p* with $M_2(R)$ (= the algebra of two-by-two real matrices). The algebra $M(e, p)$ is called a $W⁰T$ *-factor of type I*₂.

Let $e, f \in A$ be orthogonal projections. We write $e \leq f$ if there exists a partial isometry $w \in A$ with the initial projection *e* and the final one $F_w \leq$ *f*. We denote by e_p the orthogonal projection onto $\overline{Q^+pH}$, $p \in \mathcal{P}$.

The following result will be needed in Section 4.

Lemma 7. Let $p_n \in \mathcal{P}^+$ and $e_{p_n} \leq Q^- \wedge (F_{p_n} \vee e_{p_n})^\perp$. Then there exists a simple projection $g_n \in \mathcal{P}^+$ such that:

- 1. $e_{p_n} = e_{g_n}, ||e_{g_n} g_n|| \le ||e_{p_n} p_n||.$
- 2. Let $Q_1^+ \in \mathcal{P}$ be a maximal positive projection such that $p_n \leq Q_1^+$, and let $\mathcal{T}_1 := 2Q_1^+ - I$. In \mathcal{H} with the Hilbert product $(\cdot, \cdot)_1 :=$ $(\mathcal{T}_1 \cdot, \cdot)$ the projection g_n is simple and $Q_1^+ g_n \mathcal{H} = p_n \mathcal{H}$, $||g_n - p_n||_1$ \leq $||e_{p_n} - p_n||.$

Proof. We need the index *n* in p_n , g_n only in the proof of Lemma 12. Hence we do not used the index *n* in the proof below.

Let $p = (:= p_n) = p(x, v)$ and $\alpha := \frac{1}{2} (||p|| + 1) (= ||x||)$. It is clear that $e_p \le x \le \alpha e_p$. One can suppose that $Q^*\mathcal{H} \cap p\mathcal{H} = 0$. Put

$$
y_0 := (\alpha - 1)^{-1} (x - e_p) \{ \alpha^{1/2} I + [\alpha e_p - (x - e_p)]^{1/2} \}^{-2}
$$

Thus $0 \le y_0 \le e_p$. By the assumption, there exists a partial isometry $w \in$ **A** with the initial projection vv^* and the final one $F_w \leq Q^- \wedge (F_p \vee e_p)^{\perp}$. Let

$$
z := vy_0^{1/2}v^* + w(F_v - vy_0^{1/2}v^*)^{1/2} = vy_0^{1/2}v^* + wv(e_p - y_0)^{1/2}v^*]
$$

It can be easily shown that z is a partial isometry with the initial projection $vv^* = F_v$. By the construction, $g := p(\alpha e_p, zv)$ is a simple projection, $e_g =$ e_p and $||e_g - g|| = ||e_p - p||$. The operator $y_0^{1/2}$ is a solution of the equation

$$
\alpha(x - e_p)^{1/2} = 2[\alpha(\alpha - 1)]^{1/2}y^{1/2} - (\alpha - 1)(x - e_p)^{1/2}y
$$

Making use of this, we can verify that

$$
pgp = p(x, v)p(\alpha e_p, zv)p(x, v) = \alpha p(x, v)
$$
\n(4)

By (2), the new Hilbert product $(x, y)_1 := [\mathcal{T}_1 x, y]$ is equivalent to (\cdot, \cdot) in \mathcal{H} . By (4), $p(\alpha e_p, zv)$ is simple in \mathcal{H} with $(\cdot, \cdot)_1$. By the construction, $||p||$ $-g\|_{1} = \|e_{p} - p\|$. The lemma is proved.

4. MEASURES ON THE LOGIC *P*

Let $(p_i)_{i \in I} \subset P$ be a set of mutually orthogonal projections. Assume that for every subset $X \subseteq I$ there exists $q = \sum_{i \in X} p_i$ (the sum being understood in the strong sense). Then a representation $p = \sum_{i \in I} p_i$ is said to be a *decomposition* of *p*. Since $p^* = JpJ$, $\forall p \in P$, we conclude that $p^* = \sum_{i \in I} pI$ p_i^* is a decomposition of p^* if $p = \sum_{i \in I} p_i$ is a decomposition of p .

A mapping μ : $P \rightarrow \mathbf{R}$ is said to be a *measure* (=quantum measure) if $\mu(p) = \sum \mu(p_i)$ for any decomposition $p = \sum p_i$. Note that if μ is a measure, then $\mu^*: P \to \mathbf{R}$, where $\mu^*(p) := \mu(p^*)$, $\forall_p \in P$, is a measure also.

Let $\|\mu\|_{\beta}(e) := \sup\{|\mu(g)|: g \in P_{\beta}, g \leq e\}, \beta \geq 1, e \in \Pi$, and let $\alpha_{\phi}^{\beta}(e) := \sup\{|\mu(p)|(\phi(S_p))^{-1} : p \in P_{\beta}, p \leq e\}, \beta \geq 1, e \in \Pi$, where ϕ is a faithful normal semifinite weight on \mathcal{N}^+ .

A measure μ is said to be *bounded* if $\sup\{\|p\|^{-1}|\mu(p)|: p \in P, p \neq 0\}$ $< +\infty$; ϕ -bounded if $\alpha_{\phi}^{\beta}(I) < +\infty$, $\forall \beta \geq 1$; *finite* if $\|\|\mu\|\|_{\beta}(I) < +\infty$, $\forall \beta \geq 1$ 1; *Hermitian* if $\mu(p) = \mu(p^*)$, $\forall p \in P$; *skew Hermitian* if $\mu(p) = -\mu(p^*)$, $\forall p \in P$; *regular* if there exists an operator *A* such that $\mu(p) = \Re{\text{tr}(Ap)}$, $\forall p \in P$. Note that a measure μ is the sum $\mu = 1/2(\mu + \mu^*) + 1/2(\mu \mu^*$) of Hermitian and skew Hermitian measures.

A trivial computation on two-dimensional matrices shows that the following lemma is true.

Lemma 8. Let $\mu_n(\cdot) = \text{tr}(A_n \cdot)$ be a family of measures in an indefinite metric space *K*, dim $K = 2$, with a canonical symmetry $\overline{\mathcal{I}}$. Assume $\alpha_c :=$ $\sup\{|\mu_n(p)|: n \in \mathbb{N}, ||p|| \leq c\}$ or $+\infty$. Then for any $\epsilon > 0$ there exists $\delta \in$ $(0, 1)$ such that $p_f \in P^{\pm}$, $||p_f|| < 1 + \delta$ implies $\sup_n\{|\mu_n(Q^{\pm}) - \mu_n(p_f)|\}$ e. Here $\mathbf{Q}^{\pm} = (1/2)(I \pm \overline{T})$.

Lemma 9. Let N be a semifinite von Neumann algebra and let τ be a faithful normal semifinite trace on \mathcal{N}^+ . If v is a τ -bounded measure, then v is a finite measure:

Proof. First we consider the restriction of v on $P_1 (= \Pi)$. If N is a finite von Neumann algebra, then it is clear that $\alpha_{\tau}^1(I) < +\infty$.

Let N be a properly infinite von Neumann algebra. Dorofeev (1992) proved that any measure $\mu: \Pi' \to R$ on the set of all orthogonal projections Π' from a von Neumann algebra containing no finite central summands of type I is bounded, i.e., $\sup\{|\mu(p)|: p \in \Pi'\}$ $\lt +\infty$. It is easily to show by analogy that the measure ν on the set of all (orthogonal) projections from *JW*-algebra *M* containing no finite central summand of type I is bounded also.

Let now $\beta > 1$. It is clear that there exists $e \in \Pi$ such that $\tau(e) < +\infty$ and $\|\nu\|_{\beta}(e^{\perp}) < +\infty$. Let $p = p(x, y) \in P_{\beta}$. Without loss of generality we can assume that *p* is a properly skew projection.

Let $f := F_p \wedge e^{\perp}$. By Remark 4(*i*), there exists $g \in P_\beta$ such that $F_g =$ *f* (and hence $g \leq p$). By the construction of projections from *P*, $g \leq e^{\perp}$. By the choice of *f*, we have $\tau(p - q) = \tau(F_p - f) \leq \tau(e)$. Thus

$$
|\nu(p)| \le |\nu(g)| + |\nu(p - g)| \le ||\nu||_{\beta}(e^{\perp}) + 2\alpha^{2\beta}\tau(e)
$$

The proof is complete.

Lemma 10. Let N be continuous, countably decomposable von Neumann algebra and let $v: P \to \mathbf{R}$ be a measure. For any $\beta \ge 1$ there exists a sequence ${e_n} \subset \Pi, e_n \to I$ in the strong operator topology such that $|||v|||_{\beta}(e_n) < +\infty, \forall n$.

Proof. Let ϕ be a faithful normal state on N. We can assume that $\|\psi\|_{\mathcal{B}}(I)$ $= \infty$. Then there exists $p = p(x, y) \in P_\beta$ such that $|v(p)| \ge 2^n$. Let $\{p_i\}_{1}^m$, where $m = 2^n$, be a family from Lemma 5. By the construction, $\phi(S_{p_i}) \leq$

 2^{-n} , $\forall i$. It is clear that there exists p_i (without loss of generality we can assume $p_i = p_n$) such that $|\nu(p_n)| \geq 1$.

Let $\|\|\nu\|\|_{\beta}(I - S_{p_n}) = \infty$. By analogy, there exists $p_{n+1} \in P_{\beta}, p_{n+1} \leq I S_{p_n}$ such that $|v(p_{n+1})| \ge 1$ and $\phi(S_{p_{n+1}}) \le 2^{-(n+1)}$.

We shall continue this process. Let us suppose for the moment that there exists a countable family ${p_i}_n^{\infty}$. Then by the construction, there exists $\sum_{i=1}^{\infty} p_i \in P_{\beta}$ and at the same time $|\nu(p_i)| \geq 1$, \forall_i . This is a contradiction with the definition of a measure. Therefore there exists a finite family $\{p_i\}_n^k$. Put $e_n := I - \sum_{i=1}^k S_{p_i}$. Then $\phi(e_n) \geq 1 - \sum_{i=1}^{\infty} 2^{-i}$ and $|||v|||_{\beta}(e_n) < +\infty$. We obtain a suitable family, which completes the proof of Lemma 10.

We are thus led to the following strengthening of Lemma 10.

Lemma 11. Let N be a W^*J -algebra of type II. Then there exists a sequence $\{r_n\} \subset \Pi$, $r_n \uparrow I$, such that $\tau(r_n^{\perp}) \downarrow 0$ and $\alpha_{\tau}^{\beta}(r_n) < +\infty$, $\| |v\|_{\beta}(r_n)$ $<$ +∞, ∀β and ∀*n*.

Proof. There exists a unique self-adjoint *J*-reality operator $A \in L_1(\mathcal{N},$ τ) such that $\nu(e) = \tau(A \circ e), \forall e \in \Pi$. Let $A = \int \lambda df_{\lambda}$ be the spectral representation for *A* and let $f^n := f_n - f_{-n}$. Let $M(t, e)$ ($e \in \Pi, t > 0$) denote a maximal set ${g_i} \in P_\beta$, $g_i \leq e$, with mutually orthogonal projections ${S_{gi}}$ such that $v(g_i) > tr(S_{gi})$.

1. Suppose for the moment that $\alpha_{\tau}^{\beta}(f^{n} - (\sum S_{g_{i}}; g_{i} \in M(t, f^{n})) > t +$ *n*. Then $|v(p)|/\tau(S_p) > t + n$, for some $p \le f^n - (\sum S_{g_i}: g_i \in M(t, f^n))$.

(i) If $v(p) > 0$, then $p \in M(t, f^n)$. This is a contradiction with the maximality of $M(t, f^n)$.

(ii) Let $\nu(p) < 0$. We have

$$
\nu(p) + \nu(S_p - p) = \nu(S_p) \quad \text{and} \quad |\nu(S_p)| \tau(S_p)^{-1} \le n
$$

Hence

$$
\frac{\nu(S_p - p)}{\tau(S_p)} = \frac{\nu(S_p)}{\tau(S_p)} - \frac{\nu(p)}{\tau(S_p)} > \frac{\nu(S_p)}{\tau(S_p)} + t + n \ge t
$$

In this case $S_p - p \in M(t, f^n)$. We have a contradiction with the maximality of $M(t, f^n)$ again.

Thus

$$
\alpha_{\tau}^{\beta}(f^{n} - (\sum S_{g_{i}}; g_{i} \in M(t, f^{n})) \leq t + n \tag{5}
$$

2. Fix $\epsilon > 0$. Let us demonstrate that there exists *t* such that $\tau(\sum S_{gi}: g_i)$ $\in M(t, f^n)$ \leq **6.** Let $m_1 \in \mathbb{N}$ be such that $m_1^{-2} \leq$ **6.** Then

$$
(1_1) \qquad \tau(\sum S_{gi}: g_i \in M(m_1^3, f^n)) < \epsilon
$$

or

$$
(2_1) \qquad \tau(\sum S_{gi}: g_i \in M(m_1^3, f^n)) \ge \epsilon
$$

If (1_1) , then (5) , where $t = m_1^3$.

If (2₁), then there exists $p_1 \in P_\beta$ such that $p_1 \leq f^n$, $v(p_1) \geq m_1$, and $\tau(S_{p_1}) \le m_1^{-2} < \epsilon$. Let $e_1 := S_{p_1}$ and let $m_2 \in \mathbb{N}$ be such that $m_2^{-2} < \epsilon_1 :=$ $\epsilon - m_1^{-2}$. Then

$$
(1_2) \qquad \tau(\sum S_{g_i}: g_i \in M(m_2^3, f^n - e_1)) < \epsilon_1
$$

or

$$
(2_2) \qquad \tau(\sum S_{g_i}: g_i \in M(m_2^3, f^n - e_1)) \ge \epsilon_1
$$

again.

If (1_2) , then

$$
\alpha_7^{\beta} (f_n - e_1 - (\sum S_{gi}: g_i \in M(m_2^3, f^n - e_1))) \leq m_2^3 + n
$$

and

$$
\tau((\sum S_{gi}: g_i \in M(m_2^3, f^n - e_1)) + e_1) < \epsilon_1 + m_1^{-2} < \epsilon
$$

If (2₂), then there exists $p_2 \in P_\beta$ such that $p_2 \leq f^n - e_1$, $v(p_2) \geq m_2$, and $\tau(S_{p2}) \leq m_2^{-2}$.

If we continue this process, then the process (2_n) stops at some step *k*. Otherwise we have the sequence ${p_n}_1^{\infty} \in P_\beta$ of mutually orthogonal projections with the property $v(p_n) > m_n$ and $p := \sum p_n \in P_{\beta}$, contradicting the definition of the measure.

Thus the inequality

$$
(1_k) \qquad \tau((\sum S_{g_i}: g_i \in M(m_k^3, f^n - e_1 - e_2 - \cdots - e_{k-1})) < \epsilon_{k-1})
$$

is true. By the construction,

$$
\tau((\sum S_{g_i}: g_i \in M(m_k^3, f^n - e_1 - \cdots - e_{k-1})) + e_1 + \cdots + e_{k-1}) < \epsilon
$$

Hence for a given $\epsilon = 2^{-n}$ there exists $e_n(\beta) \in \Pi$ with the properties $e_n(\beta) \le f^n$, $\tau(e_n(\beta)) < 2^{-n}$, and $\alpha_\tau^{\beta}(f^n - e_n(\beta)) < +\infty$. Let n_k be such that $\tau(I - f^{n_k})$ < 2^{-k}. Let $\beta = m$. By Lemma 9, the sequence $r_n :=$ $\wedge_{m\geq n}(f^{n_m}-e_{n_m}(m))$ is suitable.

Let $p(x, y) \in P_{\beta}$. Put $P_{x,y}^{\beta} = \{p(x_o, v_o) \in P_{\beta}: F_{x_o} \le F_x\}.$

Lemma 12. Let N be a W^*J -algebra containing no central summand of type I_2 . Let the projection $p(x, y)$ and a measure v be such that:

- (i) $\sup\{|v(p(x_o, v_o))|: p(x_o, v_o) \in P_{x, v}^{\beta}\} < +\infty, \forall \beta \ge 1.$
- (ii) The restriction of v on any $W^0\mathcal{T}$ -subfactor of type I₂ is a regular measure.

786 Matvejchuk

Then $\nu(p(x, v)) = \lim_{h \to 0} \nu(p(x_n, v))$, $\forall p(x, v) \in P$. Here $p(x_n, v)$ is the sequence from Corollary 2.

Proof. Let $p := p(x, y) \in P$. Put $e := F_x$. Let \mathcal{H}_e be the Hilbert space, N_e be the algebra, [\cdot , \cdot] be the indefinite metric, and the logic P_e be as in Section 3. By the construction, $p(x, v)$ and $p(x_n, v)$ ($\in P_e$) are maximal positive projections. Let $(x, y)_0 := [(2p(x, v) - I)x, y]$ be a new Hilbert product in \mathcal{H}_e . With respect to the $(\cdot, \cdot)_0$ the operator $p(x, v)$ is an orthogonal projection. Let $Q^+ := p(x, v)$, and $Q^- := I - Q^+$, and $p_n := p(x_n, v)$.

1. Let first the pair (p, p_n) $\forall n$ be such that $e_{p_n} \leq Q^- \wedge (F_{p_n} \vee e_{p_n})^{\perp}$ in \mathcal{H}_e with $(\cdot, \cdot)_0$. [By the definition of Q^+ and $p(x_n, v)$, we have $e_{p_n} = Q^+$ in \mathcal{H}_e with $(\cdot, \cdot)_0$.] Let g_n be the projection from Lemma 7. By the construction of \mathcal{H}_e , we have $p_n, g_n \in P_{x,y}^{\beta}$ $\forall_n \in \mathbb{N}$, and some $\beta > 1$. By the construction again, the minimal $-$ ⁰ algebras $\mathcal{N}(p, g_n)$ and $\mathcal{N}(p_n, g_n)$ generated by p, g_n and p_n , g_n , are $W^0\mathcal{T}$ -factors of type I₂.

By the assumption, the restriction of v on $\mathcal{N}(p, g_n)$ and on $\mathcal{N}(p_n, g_n)$ is a regular measure. Let us identify $\mathcal{N}(p, g_n)$ and $\mathcal{N}(p_n, g_n)$ with the algebra $M_2(R)$ of all two-by-two real matrices so that g_n corresponds to $\mathfrak{D}^+ = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. This generates a family μ_n of regular measures on $M_2(R)$. By (i), the sequence μ_n satisfies the assumption of Lemma 8. By the construction, $\|p - g_n\| \to 0$ and $||g_n - p_n|| \to 0$ ($n \to \infty$). By Lemma 8, for a given $\epsilon > 0$ there exists $N(\epsilon)$ such that $n > N(\epsilon)$ implies

$$
|\nu(p) - \nu(p_n)| \le |\nu(p) - \nu(g_n)| + |\nu(g_n) - \nu(p_n)| < \epsilon
$$

2. In the general case there exist decompositions $p = p¹ + p² + p³$ and $p_n = p_n^1 + p_n^2 + p_n^3$ such that $||p^i - p_n^i||_{n \to \infty} \to 0$ and the pair (p^i, p_n^i) $(i = 1,$ 2, 3) satisfies step 1. Thus

$$
\nu(p) = \sum_{1}^{3} \nu(p^{i}) = \sum_{1}^{3} \lim \nu(p_{n}^{i}) = \lim \nu(p_{n})
$$

We can now prove our main result.

Theorem 13. Let *M* be a real *W**-algebra of *J*-real bounded operators containing no finite central summand in a complex Hilbert space *H* with conjugation *J* and let *P* be the quantum logic of all *J*-orthogonal projections in the von Heumann algebra $\mathcal{N} = \mathcal{M} + i\mathcal{M}$. Let $\mu: P \to R$ be a Hermitian measure. Then

$$
\mu(p) = \Re \psi(p), \qquad \forall p \in P \tag{6}
$$

where ψ is a *J*-self-adjoint ultraweakly continuous linear functional on N such that $\mu(p) = \psi(p), \forall p \in \Pi$.

Proof. The proof will consist of several steps.

1. First suppose that M is the set $B_{\varphi\Re}(H)$ of all *J*-real bounded operator in *H*, dim $H = +\infty$. By Dorofeev and Sherstnev (1990), any measure on the set of all orthogonal projections in an infinite-dimensional Hilbert space is bounded. It is easy to see that any bounded measure is regular. The set II is isomorphic to the set of all orthogonal projections on $H_{\mathcal{R}}$. Hence for the restriction of μ to Π , there exists a unique *J*-real self-adjoint trace class operator *A* such that $\mu(p) = \text{tr}(p), \forall p \in \Pi$.

By Corollary 3 again, it suffices to prove the equality $\mu(p_f) = \Re \text{tr}(Ap_f)$ for any one-dimensional projection $p_f \in P$, where $f = c_R \varphi + ic_I \varphi^{\perp}$, c_R , $c_I \in$ R , $c_R^2 - c_I^2 = 1$, φ , $\varphi^{\perp} \in S_{\Re}$, and $(\varphi, \varphi^{\perp}) = 0$. There exists $e \in \Pi$ such that $p_{\varphi} \leq e$, dim $eH = +\infty$, $p_{\varphi} \leq e^{\perp}$, and dim $e^{\perp}H = +\infty$. Let $\mu_e(p) := \mu(p_H)$, $\forall p \in P_e$. It is clear that μ_e is a measure on P_e . By Theorem 2.1 (Matvejchuk, 1997), there exists a unique trace class operator $B \in B(\mathcal{H}_e)$, *J*-self-adjoint in \mathcal{H}_e , such that $\mu_e(p) = \text{tr}_{\mathcal{H}_e}(Bp)$, $\forall p \in P_e$. Since $\text{tr}_{\mathcal{H}_e}(Bp) = \mu(p) \in R$, it follows that

$$
\text{tr}_{\mathcal{H}_e}(Bp) = \text{tr}_{\mathcal{H}_e}(Bp^*) = \text{tr}_{\mathcal{H}_e}((Bp^*)^*) = \text{tr}_{\mathcal{H}_e}(B^*p)
$$

Hence $\mu_e(p) = \text{tr}_{\mathcal{H}_e}(\frac{1}{2}(B + B^*)p)$, $\forall p \in P_e$. Thus we can assume that *B* is self-adjoint in \mathcal{H}_e and *J*-self-adjoint, i.e., $B = \overline{J}B\overline{J}$. This means that $B =$ $eBe + e^{\perp}Be^{\perp}$. We have

$$
\mu(p_f) = \mu_e(p_f) = \text{tr}(Bp_j) = (Bf, Jf)
$$

Put $B_{\varphi} := (p_{\varphi} + p_{\varphi} \Delta)B(p_{\varphi} + p_{\varphi} \Delta)$. Then $B_{\varphi} = \mu(p_{\varphi})p_{\varphi} + \mu(p_{\varphi} \Delta)p_{\varphi} \Delta$ is the spectral decomposition for B_{φ} . It is obvious that

$$
\mu(p_{\varphi}) = \text{tr}(Ap_{\varphi}) = a |(\varphi, \kappa)|^2 + b |(\varphi, \kappa^{\perp})|^2
$$

and

$$
\mu(p_{\varphi} \perp) = a |(\varphi^{\perp}, \kappa)|^2 + b |(\varphi^{\perp}, \kappa^{\perp})|^2
$$

for some κ , $\kappa^{\perp} \in H_{\mathfrak{R}}$, $(\kappa, \kappa^{\perp}) = 0$, $a, b \ge 0$. Then

$$
\mu(p_f) = \text{tr}(Bp_f) = (Bf, Jf) = \mu(p_\varphi)(p_\varphi f, Jf) + \mu(p_\varphi^{\perp})(p_\varphi^{\perp} f, Jf)
$$

\n
$$
= \mu(p_\varphi)(c_R \varphi, Jf) + \mu(p_\varphi^{\perp})(ic_I \varphi^{\perp}, Jf) = \mu(p_\varphi)c_R^2 - \mu(p_\varphi^{\perp})c_I^2
$$

\n
$$
= [a |(\varphi, \kappa)|^2 + b |(\varphi, \kappa^{\perp})|^2]c_R^2 - [a |(\varphi^{\perp}, \kappa)|^2 + b |(\varphi^{\perp}, \kappa^{\perp})|^2]c_I^2
$$

\n
$$
= a(|(\varphi, \kappa)|^2 c_R^2 - |(\varphi^{\perp}, \kappa)|^2 c_I^2) + b(|(\varphi, \kappa^{\perp})|^2 c_R^2 - |(\varphi^{\perp}, \varphi^{\perp})|^2 c_I^2)
$$

\n
$$
= \Re(a(f, \kappa)(\kappa, Jf) + b(f, \kappa^{\perp})(\kappa^{\perp}, Jf)) = \Re(\kappa(p_f)
$$

2. Now without loss of generality we can assume that M contains no central summands of factor type I_{∞} .

In the proof of Lemma 9 we remarked that $\sup\{|\mu(p)|: p \in \Pi\} < +\infty$. In Matvejchuk (1995) it was proved that a bounded measure on the set of all projections from a *JW*-algebra containing no central summand of type I_2 continued to a linear functional on the *JW*-algebra. This means that there exists a *J*-self-adjoint ultraweakly continuous linear functional ψ such that $\mu(p) = \psi(p), \forall p \in \Pi$. By step 1, we have $\mu(p(x, y)) = \Re \psi(p(x, y))$ if $p(x, y)$ $v = \sum p(t_n e_n, v)$ is a sum of orthogonal family of simple projections from *P*. Hence we can prove (6) for $p(x, y) \in P$ where *x* has a continuous spectrum on (c, ∞) , where $c = \inf\{(x\kappa, \kappa), \kappa \in S \cap e_+H\}$. In addition, if N is a von Neumann algebra of type I_∞ , we can assume that $p(x, v)$ is an Abelian projection (i.e., F_p is an Abelian projection). Let $p(x_n, v)$ be the sequence from Corollary 2.

(i) Let N be a *W***J*-algebra of type Π_{∞} and let $\{r_n\}$ be the sequence from Lemma 11. By Lemma 11, the restriction of μ onto $\{p \in P : p \leq r_n\}$ is the finite measure. The *W***J*-algebra $r_n\mathcal{N}r_n$ acting in r_nH has the infinite type. Using this and Theorem 2.1 (Matvejchuk, 1997), we conclude that the restriction of μ on any *W*⁰*J*-subfactor $\mathcal{L} \subset r_n \mathcal{N} r_n$ of type I₂ is a regular measure. Let $p(x, y) \in P$, $p(x, y) \leq r_n$. By step 1, $\mu(p(x_n, y)) = \Re \psi(p(x_n, y))$ *v*)). By Lemma 12,

$$
\mu(p(x, v)) = \lim \mu(p(x_n, v)) = \lim \Re \psi(p(x_n, v)) = \Re \psi(p(x, v))
$$

It is clear that in the general case $p \in P$ there exists a sequence $\{p_n\} \subset P$ such that $p_n \le r_n$ and $p_n \uparrow p$. This means that (6) holds.

(ii) Now let N be a W^*J -algebra of type I_∞. Let $p(x, v) \in P$ be an Abelian projection. For an Abelian $f \in \Pi$, $\tau(f) < +\infty$ there exists a sequence ${f_m} \subset \Pi$ such that $f_m | f$ and $\sup\{| \mu(p(x, v))| : p(x, v) \in P_\alpha, F_x \leq f_m \} < \infty$, $∀m ∈ **N**$.

Let $f = F_x$. Fix $m \in \mathbb{N}$. By step 1 and by Lemma 12,

$$
\mu(p(xf_m, vf_m)) = \lim_{n \to \infty} \mu(p(x_n f_m, v f_m))
$$

$$
= \lim_{n \to \infty} \Re \psi(p(x_n f_m, v f_m))
$$

$$
= \Re \psi(p(xf_m, v f_m))
$$

Finally,

$$
\mu(p(x, v)) = \lim_{m \to \infty} \mu(p(xf_m, yf_m))
$$

=
$$
\lim_{m \to \infty} \Re \psi(p(xf_m, yf_m)) = \Re \psi(p(x, v))
$$

It is clear that (6) in the general case of F_x is true, also QED

5. SOME PROPOSITIONS ON BOUNDEDNESS OF MEASURES

We prove that the boundedness of a measure essentially depends on the dimension of *H*. Let dim $H < +\infty$. Consider a measure $\mu(p) = \Re{\text{tr}(Ap)}$, $\forall p \in P$, where $A \neq \lambda I$, and let *m* be a discontinuous endomorphism of the additive group of the real numbers. Then $m \circ \mu$ is an unbounded (and hence nonregular) measure on *P*.

Proposition 14. Let $v: P \to R$ be a bounded measure on $B(H)$, dim *H* \geq 3. Then for any $x \in S_{\Re}$ the restriction of v onto $P_{(\cdot,x)x}$ is a regular measure.

Proof. Fix *x*, *y*, *z* \in *S*_R, (*x*, *y*) = (*y*, *z*) = (*z*, *x*) = 0. By Theorem 2.3 (Matvejchuk, 1997), there exist unique \bar{J} -self-adjoint in $\mathcal{H}_{(\cdot, x)x}$ trace class operator A'_x and unique number c_x such that

$$
\nu(p) = \text{tr}(A_x'p) + c_x \dim p_+H, \quad \forall p \in P_{(\cdot, x)x}
$$

(Note that

$$
\nu(p) = \text{tr}(A_x p) - c_x \text{dim} p_H, \quad \forall p \in P_{(\cdot, x)x} \quad \text{dim } pH < +\infty
$$

Here $A_x = A'_x + c_x I$. Note also that $0 \le \dim p_+ H \le 1$, $\forall p \in P_{(\cdot,x)x}$.

Thus if we prove that $c_x = 0$, the assertion follows. By analogy, there exist unique \overline{J} -self-adjoint operators A_{ν} and A_{z} in $\mathcal{H}_{(\nu)\nu}$ and $\mathcal{H}_{(z)}$, respectively, and unique numbers c_y , c_z such that

$$
\nu(p) = \text{tr}(A_y p) - c_y \dim p_- H, \quad \forall p \in P_{(\cdot, y)y}, \quad \dim pH < +\infty
$$
\n
$$
\nu(p) = \text{tr}(A_z p) - c_z \dim p_- H, \quad \forall p \in P_{(\cdot, z)z}, \quad \dim pH < +\infty
$$

It is clear that

$$
P_{x,y} := \{ p_f \in P : f_{\Re}, f_{\Im} \in \{ \lambda x \} \cup \{ \beta y \}_{\lambda, \beta \in R} \} \subset P_{(\cdot, x)x} \cap P_{(\cdot, y)y}
$$

Let $p_f \in P_{x,y}$. Then

$$
\operatorname{tr}(A'_x p_f) + c_x \dim(p_f)_+ H = v(p_f) = \operatorname{tr}(A_y p_f) - c_y \dim(p_f)_- H
$$

Here (p_f) ₊ is the positive part of p_f in $P_{(\cdot x)x}$ and (p_f) ₋ is the negative part of p_f in $P_{(\cdot, y)y}$. But $p_f \in P_{(\cdot, y)y}^{\perp} \Leftrightarrow p_f \in P_{(\cdot, x)x}^{\perp}$. Thus

$$
tr((A_y - A'_x)p_f) = (c_x + c_y) \dim(p_f)_+ H
$$
 (7)

1. The right of (7) is a discontinuous bounded function on $P_{x,y}$ if c_x + $c_y \neq 0$.

Denote by *e* the projection $(\cdot, x)x + (\cdot, y)y$.

2(i). If $e(A_y - A'_x)e = \lambda e$, then $tr((A_y - A'_x)p_f) = \lambda$, $\forall p_f \in P_{x,y}$.

2(ii). If $e(A_y - A'_x)e \neq \lambda e$, $\forall \lambda \in \mathbf{R}$, then $p_f \to \text{tr}((A_y - A'_x)p_f)$ is an unbounded function on $P_{x,y}$.

790 Matvejchuk

By 1, 2(i) and 2(ii), we have $c_x + c_y = 0$ and $e(A_y - A_x')e = 0$. This means that $c_y = -c_x$. By analogy, $c_z = -c_x$.

By definition, $P_{y,z} \subset P_{(\cdot,y)y} \cap P_{(\cdot,z)z}$. Let $p_f \in P_{y,z}$. Then $p_f \in P_{(\cdot,y)y}^+ \Leftrightarrow$ $p_f \in P^-_{(\cdot,z)z}$. Hence

$$
tr(A_y p_f) + c_x \dim(p_f) - H = tr(A_y p_f) - c_y \dim(p_f) - H = v(p_f)
$$

=
$$
tr(A_z p_f) - c_z \dim(p_f) + H = tr(A_z p_f) + c_x \dim(p_f) + H, \quad \forall p_f \in P_{y,z}
$$

Here (p_f) and (p_f) are positive and negative parts of p_f in $P_{(.,y)y}$, respectively. Thus

$$
tr((A_y - A_z)p_f) = c_x(dim(p_f)_+H - dim(p_f)_-H), \qquad \forall p_f \in P_{y,z} \qquad (8)
$$

We have again:

1. The right of (8) is a discontinuous bounded function on P_{yz} if $c_x \neq 0$. Let us consider the left of (8). Now denote by *e* the projection $(·, y)y$ $+$ $(\cdot, z)z$.

2(i). If $e(A_v - A_z)e = \lambda e$ for some $\lambda \in \mathbf{R}, \lambda \neq 0$, then tr($(A_v - A_z)p_f$) $= \lambda$, $\forall p_f \in P_{x,z}$.

2(ii). If $e(A_v - A_z)e \neq \lambda e, \forall \lambda \in \mathbf{R}$, then the function $p_f \to \text{tr}((A_v A_z$) p_f) is unbounded on $P_{x,z}$.

By 1, 2(i), and 2(ii), we have $e(A_y - A_z)e = 0$ and $c_x = 0$. The lemma is proved.

Corollary 15. Let $v: P \to R$ be a bounded Hermitian measure on $B(H)$, dim *H* ≥ 3. Then ν (*p*) = \Re tr(*Ap*), \forall *p* ∈ *P*, where *A* is a *J*-real self-adjoint trace class operator such that $v(p) = tr(Ap)$, $\forall p \in \Pi$.

Proof. By Corollary 3, it suffices to prove that $v(p_f) = \Re{\text{tr}(Ap_f)}, \forall p_f \in$ *P*. We remarked in the introduction that Π is isomorphic to the lattice of all orthogonal projections on $H_{\mathfrak{R}}$. Thus, by the boundedness of ν on Π , there exists *J*-reality self-adjoint trace class operator *A* such that $v(p) = tr(Ap)$, $\forall p \in \Pi$.

Fix $x, y \in S_{\Re}$, $(x, y) = 0$. Let A_x from the proof of Proposition 14 and $f = ax + iby$, $a^2 - b^2 = 1$. Then

$$
tr(A_x p_f) = \nu(p_f) = \nu(p_f^*) = tr(A_x p_f^*) = tr(A_x^* p_f)
$$

Thus we can assume that $B := (p_x + p_y)A_x(p_x + p_y)$ is self-adjoint and *J*self-adjoint. This means that $B = \alpha p_x + \beta p_y$, where $\alpha = \text{tr}(Bp_x) = v(p_x) = v(x)$ tr(*Ap_x*) and $\beta = v(p_v)$. Finally,

$$
\nu(p_f) = \text{tr}(A_x p_f) = \text{tr}(Bp_f) = (Bf, Jf)
$$

= $\Re(Af, Jf) = \Re(\text{tr}(A p_f), \qquad \forall p_f \in P$

ACKNOWLEDGMENT

The research described in this paper was made possible in part by the Russian Foundation for Fundamental Research, Grant 96-01-01265.

REFERENCES

- Ayupov, Sh. A. (1986). *Classification and Representation of Ordered of Jordan Algebras*, Fan, Tashkent, Uzbekistan, UdSSR [in Russian].
- Azizov, T. Ya., and Iokhvidov, I. S. (1989). *Linear Operators in Space with an Indefinite Metric*, Wiley, New York.
- Dorfeev, S. V. (1992). On the problem of boundedness of a signed measure on projections of a von Neumann algebra, *Journal of Functional Analysis*, **103**, 209–216.
- Dorofeev, S. V., and Sherstnev, A. N. (1990). The function of reper type and their applications, *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika*, **4**, 23–29 [in Russian] [English translation, *Russian Mathematics (Iz. VUZ)*, **34**(4) (1990)].
- Matvejchuk, M. S. (1995). Linearity of charges on the lattice of projections, *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika*, **9**, 48–66 [in Russian] [English translation, *Russian Mathematics (Iz. VUZ)*, **39**, 46–64 (1995)].
- Matvejchuk, M. S. (1997) Gleason's theorem in a space with indefinite metric, *Mathematische Nachrichten*, **187**, 229–243.
- Matvejchuk, M. S. (1998). Probability measures in *W***J*-Algebras in Hilbert spaces with conjugation, *Proceedings of the American Mathematical Society*, **126**(4), 1155–1164.