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Let M be area semifinite W*-algebra of J-real operators containing no finite
central summand in a complex Hilbert space H with conjugation J. Denote by
P the quantum logic of all J-orthogonal projections in the von Neumann algebra
N = + iM. Let p: P - R be a Hermitian measure. It is shown that there
exists an unique J-self-adjoint ultrawesakly continuous linear functional s on N
such that w(p) = Ru(p), Op € P.

1. INTRODUCTION

In this paper we continue the description of measures on logics of
projections in Hilbert spaces with conjugation (Matvejchuk, 1998).

Let H be a complex Hilbert space with the inner product (-, -). We will
denote by Sthe unit sphere in H. Let J be an operator of conjugation in H
[i.e, 32 =1; (Ix, Jy) = (Y, X), IAX + By) = NIX + BJy, Ox, y € H, 0\,
B € C]. A vector x e H is said to be J-real if Jx = x. The vectors xy =
V2(x + JIx) and x5 := V2i(x — IX) [= —1/2(ix + Jix)] are J-red, Ox €
H, and X = x + ixy The set Hy of all J-real vectorsis area Hilbert space
with respect to the inner product (-, -). Let Sy denote the set S N Hy;. Put
X, y):= (Jx,y). Let B € B(H). The operator B° € B(H) such that (Bx, y) =
(x, B%), Ox,y € H, iscaledaJ-adjoint. Itisclear that B® = JB*J[= (JBJ)*],
(BA) = A°B°, and A e B(H) is J-sdlfadjoint = A = JA*J. An operator A
B(H) is said to be J-real if JAJ = A. Note that Ay := 1/2(A + JAJ) and
Ay = 12i(A — JAJ) are J-rea operators and A = Ay, + 1Ak
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A von Neumann algebra N acting in H is called a W* J-algebra if X' is
closed with respect to the J-adjunction (i.e., A, € N implies A° € N). A
weakly closed real *-algebraM C B(H) with M N iM = {0} is said to be
areal Wx-algebra. If M is areal W*-adgebra, then N:= M + iM isavon
Neumann algebra. Let N' be a W* J-algebra. It is evident that the set il of
all J-real operatorsin N isarea Wx-algebra. B € N implies JBJ [= (B%)*]
e N. Hence Byy, Bjx € Nand N = M + i

Let Jilg be the set of all self-adjoint operatorsin Jt. Then Jlsis a Jordan
algebra (=JW-algebra) with respect to the product A » B := 1/2(AB + BA).
The Jls has type | (11, 111) = the von Neumann algebra N' = Jl + i/ has
type | (11, 111) (Ayupov, 1986).

Let P [=P(N)] denote the set of al J-self-adjoint (= J-orthogonal)
projections (= idempotents) from N. With respect to the standard relations,
theorderingp=g = p=gp(= pg) = pH C gH, and the orthocomplementa-
tionp —» pt:=1— p, theset P isaquantum logic. The set of al orthogonal
projections in P is denoted by IT [ = TII(N)]. It isclear that p € P is J-redl
= p e IL Hence II(B(H)) is isomorphic to the lattice of al orthogonal
projections on Hg;.

2. THE STRUCTURE OF THE PROJECTIONS FROM P

Let p € P; then p* e P. Let p,, be the orthogonal projection onto pH N
p*H. Then p, e II and p, is the greatest orthogonal projection with the
properties p,, = p (Matvejchuk, 1998). A projection p € P is said to be
properly skew projection if p, = O. Let p # p*. Then it is clear that p —
Por 1S the properly skew projection. Let N denote the set of all orthogonal
projections from N

Let p e P. The positive part of (p + p*) will be denoted by (p + p*)-,
and by e, will be denote the orthogonal projection onto (p + p*).H. Then
e. pe. = 3(p + p*). (Matvejchuk, 1998). Put e := | — e,. Now, denote
by F, the orthogonal projection onto yH, [, € B(H).

We begin with an important formula on projections from P.

Proposition 1. Let N be aW* J-algebra, p € P, and let e_pe, = wle_pe,|

be the polar decompoasition for e_pe,. Then x := e,pe,(=e,) and v:= (U
i)w are J-rea operatorsin N, and

p =X+ ivp@ — X)V2 + (@ — )V — v(x — F)v* @)

Conversaly, let x e N be an arbitrary J-real operator such that x = F,,
and let v e N be a J-rea partia isometry with the initial projection F, and
the final (J-real) one e such that e 1 F,. Then (1) defines a projection in P.

For the proof see Matvejchuk (1998).
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To emphasize that p in (1) depends on x and v, we shall use the notation
p(x, v) as well. It is easily seen that ||p(x, V)| = [I2x — ||| = 24| — 1. The
projection p(te, v), wheret e Rand e e I1, is said to be a simple projection.
LetS,:= F, + F,, Op = p(x, v) € P. Let us denote by Py the set { p(x, V)
e P:|lp(x, V)| = B}. Let x = [ \de, be the spectral representation for x (we
assume the function A - ¢, to be right continuous). Put

X = gﬂ @i +n1/2)

(Ei+ym — €m) + (€1 — €1-) and

Vi i= V(€j+1m — Em)
Let us mention one consegquence of the formula (1).

Corollary 2.

i=n

p(Xn, V) = 2 p(% (Ei+1ym — €m), Vi) + (6. —e)

and lim [|p(x, v) = p(X,, V)| = O.
Obvioudly, (-, X)y (#0) is a projection = (x,y) = 1. Let (-, X)y (#0)
be a projection. A routine computation shows that:
L (XY € P(B(H)) = (-, X)y = (-, Jy*)y*, where y* = (y, Jy)~*%y.
2.py:=(, Jy)y € P(BH)) = (Ya, ¥a) = 0and [lywll® — llyslP* = 1.
3.Letp e P(B(H)), p # 0. Then (-, Jy*)y* = p, Oy e pH: [lysll # llysll-

Corallary 3. The logic P(B(H)) is atomistic.

Remark 4. (i) Let p = p(x, v) € Pg be a properly skew projection, f
N, and f = F,. Thenthereexistsg = g(z, W) € Py suchthat F, = F,, Fy =
f,g=np.

(i) Letp € I, f € N, and f = p. Then there exists a properly skew
projection g € P suchthat Fy = f, g = P » there exists fy € I, fo = p,
such that f, < f,ffo and v¥v = p — f,, where v is the partial isometry from
the polar representation f§ffy = v|fgffy.

Proof. (i) Let f = F,, f e Il. Then JiJ = JFJ. Let f + JfJ =
J \e, be the spectral representation for f + JJ. Pute, ;== | — g ande_ ;=
| —e. Lete fe, = wy|e_ fe,| be the polar representation for e fe,. Then
Vo = (Ui)w, is a J-redlity partial isometry. In addition, e, fe, = e, JfJe,, y,
:= e, fe, isaJ-real operator, and y, > 2e,. Put X, = yo(2y, — ) *and g =
p(Xs, Vo). Then g is the suitable projection.

Lemma 5. Let N be a countably decomposable von Neumann algebra
and let ¢ be a faithful normal state on N. Let p = p(x, v) € Py be such that
the spectrum of X is continuous in (c, +), where ¢ = inf{(xk, k): Kk € SN
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e,H}. Then for any natural m there exists a mutualy orthogona family
{p}T" C Pg such that p = = p; and &(S;) = (1/m) &(S), .

Proof. Let x = [ \de, be the spectral representation for x again. By the
assumption on x, the function ¢(e, + ve,v*) iscontinuouson (c, +«). Hence
there exists {g} T C Il with the properties: (i) 2T'e = F,, (ii) e x = xg, Ui,
(iii) (e + vev*) = (Um)d(S,), Oi. By the construction, { p(xe, ve)} T is
a suitable family.

Remark 6. Let N' be a countably decomposable continuous von Neumann
algebra. Then assesion of Lemma5 is true for any p € P.

3. INDEFINITE METRIC SUBSPACESIN H

Leeecll(0<e<I). Theset #.:= eHy @ iet Hy isarea Hilbert
space with respect to the product (-, -) and H = %, + i%.. Let J denote the
restriction of J to ¥,. Clearly J = (e — e")/¥, and J is a symmetry (i.e.,
J2=1,J = J* in ¥.. Consequently, we have:

Every b e B(#,) can be uniquely extended to a bounded linear operator
by on H, (by)* = (b*)y, and if p is a bounded projection on #, then p, is
abounded projection, too. In addition, if a projection p is J-self-adjoint, then
pu is J-self-adjoint. Conversely, if g € P and g, C ., then g/¥, is a J-
self-adjoint projection.

With respect to the product [x, y] := (Ix, ¥), OX, y € 9, the set ¥, is
a real indefinite metric space and J is a canonical symmetry with respect to
the canonical decomposition ¥, = #Z[+]%s, where ¥ := eHy and Ho
;= iet Hy (Azizov and lokhvidov, 1989).

Letp=p(x,v) e PPute=F,andJ; = p — p* (=2p — |). According
to the theory developed in Azizov and lokhvidov (1989), the restriction of
J; to ¥, (with [+, -]) is the canonical symmetry with respect to the canonical
decomposition #, = p#e [+] p* He.

Let M be areal W*-agebra of J-real operators. Let us denote by N,
[=N(M)] the set {B e (M + iM): B¥H, C FHe}. Obviously N is a real
closed in the strong operator topology *-algebra. In addition, B € N implies
B? € N.. N.isaW+J-algebrain the real indefinite metric space ¥,. Put P,
:= PN Ne Clearly, P, is a quantum sublogic of P. The logic P, is caled a
hyperbalic logic.

Let us denote by PZ (Pg) the set of all p e P, for which the subspace
p#. is positive (i.e., 0z € pHe, p # O, [z, Z > 0), respectively, negative
(e, 0z € pHe, z # 0, [z, Z] < 0). We will denote by Pz the set P¢ or
Ps. Note that pe P = Jp=0on¥.adpe P; = Jp=0. For
instance, p(x, V) € P andp(x, v) € PgL. Let N'= B(H). Then the projection
py=(, )y € Pe(, )y e Pe] = yn e eHy and yy € e'Hy = yy €
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etHy and yx € eHp). Every projection (Azizov and lokhvidov, 1989) p
P. is representable (not unique!) in the form p = p, + p_, where p. € p;.

Some Propositions on Projections in an Indefinite Metric Space

Let # be a Hilbert space (real or complex) with respect to the Hilbert
product (-, -). Let Q" (0 < Q" < I) be an orthogonal projection on # and
FJ:=2Q"—1,Q =1 — Q" Fix theproduct [X, V] := (Ix, ). OX, ¥y €
7. ¥ is an indefinite metric space with the inidefinite metric [-, -] and with
the canonical symmetry J. A Wx-algebra A (probably rea) acting in ¥ is
caled aW+J-algebra if 7 € A. A W*J-algebra A is said to be a W*K-
algebra if projections Q" and Q~ are infinite with respect to A. Let %
(P*, 97) denote the set of all I-self-adjoint (positive, negative) projections
from A.

Let Qf be amaximal positive projection (Azizov and lokhvidov, 1989)
and T, :=2Q7 — |. Put (X, ¥); := [T% ¥] OX, y € #. By the definition,
JIT, (=0) is an invertible operator. Hence there exist o, B € R such that
ol = 3, = Bl. This means that

alX X) = (TIT X X) = (X X)1 = B(X, X), Ox e # 2
Also we have
06 = (61| = [(( = TTIx, Q)| = Il = TT 4| M7 ©)

=17 = Tl IXP = 21Q" — Qrll K, DOx e %

Letp e %, x = Q'pQ*,and Q pQ* = w|Q pQ*| bethe polar decomposi-
tion for Q™ pQ*. The formula

p =X+ wx— X2 — (- x2w — wx — Fyw

is an indefinite analogy for (1) with a similar proof.

Assume that p € P* is a simple projection in ¥ with product (-, -),
ie,p=te+ (2 —t)Y2w — w*) — (t — )ww*; heret > 1, e = Qf, and
w is a partial isometry with the initial projection e and final one F,,, F, =
| — Qf in ¥ with (-, -);. It isclear that pe — te = (2 — )Y?w, ep — te =
—(t? — t)Y2w*. Hence we may identify the minimal real °-algebra Jl(e, p)
generated by e and p with My(R) (= the algebra of two-by-two real matrices).
The algebra JiL(e, p) is caled a W°T -factor of type I..

Let e f € A be orthogona projections. We write e < f if there exists
apartial isometry w e A with the initial projection e and the final one F,, =
f. We denote by e, the orthogonal projection onto Q*pH, p € .

The following result will be needed in Section 4.

Lemma 7. Let p, e " and e,, < Q™ O (Fy, Oe,)*. Then there exists
a simple projection g, € %* such that:
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€n = € 1€, — Fll = llep, — Pl
Let Qf € P be amaxima positive projection such that p, = Qf,

and let 7, := 2Q7 — I. In ¥ with the Hilbert product (-, -); :=
(T -, -) the projection g, is simple and Qi g\# = pnt, [Ign — Pulla
= [l&y, — Pull-

N

Proof. We need the index n in p,, g, only in the proof of Lemma 12.
Hence we do not used the index n in the proof below.

Letp = (:=pn) = p(x, v) and o := Z(llpll + 1) (= IIM]). It is clear that
€, < X = ae,. One can suppose that Q"% N p = 0. Put

Yoi= (@ = D7t (x — &) {a¥ + [ag, —(x — &))" 2

Thus 0 <y, = €, By the assumption, there exists a partial isometry w e
A with the initial projection w* and the final oneF,, = Q™ O(F, Oey)*. Let

z:= WHV* + W(F, — WA )2 [= widrr + wu(e, — Yo)Y2v*]

It can be easily shown that z is a partial isometry with the initial projection
w* = F,. By the construction, g := p(«a€,, 2v) is a simple projection, g; =
e, and |le; — gl = lle, — pll. The operator y§? is a solution of the equation

alx — )2 = oo — DAY = (o = D(x — &)y
Making use of this, we can verify that

pgp = p(x, V)p(ay, 2v)p(X, V) = ap(x, V) (4)

By (2), the new Hilbert product (X, y), := [T 1X, Y] isequivaent to (-, -)
in €. By (4), p(ag,, 2v) is simple in 3 with (-, -);. By the construction, ||p
— dl = lleg; — pll. The lemma is proved.

4. MEASURESON THE LOGIC P

Let (p)ic; C P be a set of mutually orthogonal projections. Assume
that for every subset X C | there exists q = Z; cx p; (the sum being understood
in the strong sense). Then a representation p = 2., p; is said to be a
decomposition of p. Since p* = JpJ, 0, € P, we conclude that p* = X,
p¥ is a decomposition of p* if p = 2, p; is a decomposition of p.

A mapping p: P - R is said to be a measure (=quantum measure) if
w(p) = = w(p) for any decomposition p = = p;,. Note that if . isameasure,
then p*: P - R, where p*(p) := p(p*), O, € P, is ameasure also.

Let [[[llp(®) == sup{|n(@)): g € Pp, g =€}, B =1 e e II, and let
af(e) := sup{[w(P)|(B(S)) = p € Pep=6, B =1 e c Il where  is
a faithful normal semifinite weight on N'*.
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A measure . is said to be bounded if sup{||pll"}/w(p)|: p € P, p # O}
< +o0; ¢-bounded if af(l) < +o, OB = 1; finiteif [[|llg(l) < +o°, OB =
1; Hermitian if w(p) = w(p*), Op e P; skew Hermitian if w(p) = —w(p*),
Op e P; regular if there exists an operator A such that w(p) = Ntr(Ap),
Op € P. Note that a measure . is the sum w = 1/2(n + p*) + Y2(n —
w*) of Hermitian and skew Hermitian measures.

A trivial computation on two-dimensional matrices shows that the fol-
lowing lemmais true.

Lemma 8. Let w, (-) = tr(A,-) be afamily of measuresin an indefinite
metric space K, dim K = 2, with a canonical symmetry J. Assume o :=
sup{|n(P)l: n € N, [lpll = ¢} < +o. Then for any € > 0 there exists § <
(0, 1) such that pr e P*, |lpdl < 1 + & implies supf |nn(Q%) — pa(PYf} <
€. Here Q= = (V2)(1 = 7).

Lemma 9. Let N' be a semifinite von Neumann algebra and let T be a
faithful norma semifinite trace on N*. If v is a T-bounded measure, then v
is a finite measure;

Proof. First we consider the restriction of v on P, (= II). If N isafinite
von Neumann algebra, then it is clear that o(l) < +co.

Let N' be a properly infinite von Neumann algebra. Dorofeev (1992)
proved that any measure w: I’ — R on the set of al orthogonal projections
IT" from a von Neumann algebra containing no finite central summands of
type | is bounded, i.e., sup{|(p)|: p € II'} < +oo. It is easily to show by
analogy that the measure v on the set of al (orthogonal) projections from
JWralgebra. it containing no finite central summand of type| is bounded also.

Let now 3 > 1. It is clear that there exists e e II such that T(e) < +
and ||v]||g(e*) < +e. Let p = p(x, V) e Pg. Without loss of generality we
can assume that p is a properly skew projection.

Let f := F, Oe". By Remark 4(i), there exists g € Py such that Fy =
f (and hence g = p). By the construction of projections from P, g < e*. By
the choice of f, we have 7(p — q) = 7(F, — f) = 7(g). Thus

w(p) = (@] + [v(p — 9| = [[Vl[e(e") + 2a*r(e)
The proof is complete.

Lemma 10. Let N be continuous, countably decomposable von Neumann
algebraandlet v: P — R beameasure. For any 3 = 1 there exists a sequence
{e} C Il e, — | inthestrong operator topology such that ||[v]||s(e,) < +2°, On.

Proof. Let ¢ be afaithful normal state on.N'. We can assume that |[[v]||s(1)
= o, Then there exists p = p(x, v) € Pg such that [v(p)| = 2" Let {p}T,
where m = 2", be a family from Lemma 5. By the construction, ¢(S,) =
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27" Oi. It is clear that there exists p; (without loss of generality we can
assume p; = p,) such that |v(p,)| = 1.

Let [[p][g(l = S,) = . By analogy, there existspn+1 € Pg, Prsz =1 —
S, such that [v(py.1)] = 1 and &(S,,,,) = 2.

We shall continue this process. Let us suppose for the moment that there
exists a countable family {p};. Then by the construction, there exists
S p e Pg and at the same time [v(p;)| = 1, 0. Thisis a contradiction with
the definition of a measure. Therefore there exists a finite family { p;}X. Put
e =1 — 3KS,. Then b(ey) = 1 — 37 27 and [|b]]|g(e;) < +e=. We obtain
a suitable family, which completes the proof of Lemma 10.

We are thus led to the following strengthening of Lemma 10.

Lemma 11. Let N' be a WrJ-algebra of type Il. Then there exists a
sequence {r} C IL r, 1 I, such that 7(ri) 1 0 and of(ry) < +oo, [|[v]l|a(rs)
< +oo, B and On.

Proof. There exists a unique self-adjoint J-reality operator A e L,(N,
7) such that v(e) = 7(A - €), Oe  II. Let A = [ \df, be the spectral
representation for Aand let f" .= f, — f_,.. Let M(t, €) (e € II, t > 0) denote
a maximal set {g} € Pg, g = e with mutually orthogonal projections
{S} such that v(g) > tr(S;).

1. Suppose for the moment that o(f" — (2 §;: g € M(t, f) >t +
n. Then [v(p)|/7(S) >t + n, for somep = " — (2 §;: g € M(t, ).

@) If v(p) > 0, then p e M(t, f"). This is a contradiction with the
maximality of M(t, f").

(i) Let v(p) < 0. We have

v(p) + S -P =S  ad SIS t=n

Hence

vS P _vS)  vp) S
7(S) USRI CYR Y
In thiscase §, — p € M(t, f"). We have a contradiction with the
maximality of M(t, ™) again.
Thus

+t+n=t

aB(f = (3 S g € M(t, M) =t + n (5)

2. Fix € > 0. Let us demonstrate that there exists t such that 7(Z §;: g
e M(t, f") < e. Let my € N be such that m;? < e. Then

1) (XSG e M(mi, ) <e

or
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() (X S0 e MM, ) = e

If (1,), then (5), where t = m3.

If (2,), then there exists p; € Pg such that p, = f", v(p,) = my, and
T(S) =m?<e Lete:=S, andlet m, € N be such that m;2 < ¢; :=
e — m;2 Then

(1) X S0 e M(M3, f" — &) < ¢

or
(22) X S0 e MM, " — @) = ¢
again.
If (1,), then
B(fi—e— XS geMmf —e))=m+n
and

(Y S 0 e MM, " —e)) +e) <e +m2<e

If (2,), then there exists p, € Py such that p, = " — e, v(p,) = My,
and 1(S,,) = mp2

If we continue this process, then the process (2,) stops at some step k.
Otherwise we have the sequence { p,}7 € P of mutually orthogonal projec-
tions with the property v(p,) > m, and p := = p, € Py, contradicting the
definition of the measure.

Thus the inequality

(L) (S S G eMMLfN—e —e— - —a) <&
is true. By the construction,
(XS0 e MM, f"—e — - —g_y) + e+ +a.)<e

Hence for a given e = 27" there exists e,(B) e II with the properties
e B) = ", 1(ey(B)) < 27", and aB(f" — &,(B)) < +c°. Let n, be such that
(1 —f%) < 27X Let B = m. By Lemma 9, the sequence r, :=
Ohen(f™ — e, (m)) is suitable.

Let p(x, v) € Pg. Put PE, = {p(X, Vo) € Pg: Fy, = F}.

Lemma 12. Let N' be a Wx J-algebra containing no central summand of
type .. Let the projection p(x, v) and a measure v be such that:

(i) sup{[v(p(Xo, Vo))|: P(%o, Vo) € PR} < +o0, OB = 1.
(i) The restriction of v on any WPT -subfactor of type I, is a regular
measure.
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Then v(p(x, v)) = lim v(p(X,, v)), Op(X, V) € P. Here p(x,, V) is the
sequence from Corollary 2.

Proof. Let p:= p(x, V) € P. Put e .= F,. Let ¥, be the Hilbert space,
Ne be the algebra, [+, -] be the indefinite metric, and the logic P, be as in
Section 3. By the construction, p(x, v) and p(x,, V) (e P¢) are maximal
positive projections. Let (X, ¥)o := [(2p(x, V) — )X, y] be a new Hilbert
product in .. With respect to the (-, -)o the operator p(x, V) is an orthogonal
projection. Let Q* := p(x, v), and Q™ := | — Q*, and p, := p(X,, V).

1. Let first the pair (p, pn) On be such that , < Q™ O (F,, Oe,)*" in
¥ with (-, -)o. [By the definition of Q" and p(x,, v), we have g, = Q" in
d€e with (-, -)o.] Let g, be the projection from Lemma 7. By the construction
of 9., we have p,, g, € P, O, € N, and some 8 > 1. By the construction
again, the minimal —° algebras N'(p, g,) and N(p,, g,) generated by p, g,
and p,, 0., are WPT -factors of type I,.

By the assumption, the restriction of v on N(p, g,) and on N(pn, g.) is
a regular measure. Let us identify N'(p, g,) and N(pn, g,) with the algebra
M,(R) of all two-by-two real matrices so that g, corresponds to 2* = (§ 9.
This generatesafamily ., of regular measures on My(R). By (i), the sequence
I, Satisfies the assumption of Lemma 8. By the construction, ||p — g,| - O
and ||g, — pdl = 0 (n - ). By Lemma 8, for a given € > 0 there exists
N(e) such that n > N(e) implies

[v(p) — v(pn)l = [v(P) — v(@)| + [v(gn) — v(P)| < e
2. In the general case there exist decompositions p = p* + p? + p*and
Pn = Pa + PA + pa such that [[p' — pifla.... — 0 and the pair (p', pr) (i = 1,
2, 3) satisfies step 1. Thus
3 3

v(p) = 2 v(P) = X limv(ph) = lim v(py)

1 1
We can now prove our main result.

Theorem 13. Let M be area W*-algebra of J-real bounded operators
containing no finite central summand in a complex Hilbert space H with
conjugation J and let P be the quantum logic of al J-orthogonal projections
in the von Heumann algebra N' = Jt + iAl. Let w: P - R be a Hermitian
measure. Then

w(p) =Ry(p), OpeP (6)

where ¢ is a J-self-adjoint ultraweakly continuous linear functional on N
such that w(p) = ¥(p), Op e II.

Proof. The proof will consist of severa steps.
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1. First suppose that .t isthe set By (H) of al J-real bounded operator
inH, dimH = +c0. By Dorofeev and Sherstnev (1990), any measure on the
set of al orthogonal projections in an infinite-dimensional Hilbert space is
bounded. It is easy to see that any bounded measure is regular. The set Il is
isomorphic to the set of al orthogonal projections on Hgy. Hence for the
restriction of w to II, there exists a unique J-real self-adjoint trace class
operator A such that w(p) = tr(p), dp e II.

By Corollary 3 again, it suffices to prove the equality p(pr) = Ntr(Apy)
for any one-dimensional projection p; € P, wheref = cre + icot, Cr, C €
RG—-—=10¢ ¢ €Sy and (e ¢") = 0. There exists e e II such that
p, =€ dmeH = 4+, p,. =e", anddime'H = +x. Let pe(p) := w(py),
Op € P.. Itisclear that p., isameasure on P.. By Theorem 2.1 (Matvejchuk,
1997), there exists a unique trace class operator B € B(¥,), J-self-adjoint
in ¥, such that pe(p) = try(Bp), Op € Pe. Since try (Bp) = w(p) € R, it
follows that

try(Bp) = try(Bp*) = try((Bp*)*) = try(B*p)

Hence pe(p) = try (B + B*)p), Op e Pe. Thus we can assume that B is
self-adjoint in ¥, and J-self-adjoint, i.e, B = JBJ. This means that B =
eBe + e'Be’. We have

w(P) = pe(pr) = tr(Bpy) = (Bf, J)

Put B, := (Py + Pe1)B(Py + Pt)- Then By = p(py)py + m(Pet)p, isthe
spectral decomposition for B,. It is obvious that

n(p,) = tr(Ap,) = al(e, k)|? + b|(e, k1)[?
and
n(pet) = a(e*, k)| + bl(e*, kH)[?

for some k, k' € Hy, (x, k') = 0,8, b=0.
Then

()

tr(Bpy) = (Bf, JF) = w(pe)(pef, I) + pm(pe)(petf, I)
R(Pe)(Crey IF) + p(pe)(iCiot, IF) = p(pe)CR — (Pet)CF
[al(e, K)[* + bl(e, k)& — [al(e*, K)[* + bl(e*, k")
= a(|(¢, k)|’ — (", K)[’c?) + b(|(@, k)[R — [(¢*, ¢1)[cD)
= R(a(f, K)(k, I) + b(f, k)K", I)) = NRtr(Ap)

2. Now without loss of generality we can assume that il contains no
central summands of factor type I...



788 M atvejchuk

In the proof of Lemma 9 we remarked that sup{ |w(p)|: p € II} < +oe.
In Matvejchuk (1995) it was proved that a bounded measure on the set of
al projections from a JIW-algebra containing no central summand of type I,
continued to a linear functiona on the JW-algebra. This means that there
exists a J-self-adjoint ultraweakly continuous linear functional {s such that
r(p) = U(p), Op € IL By step 1, we have w(p(x, v)) = Ry(p(x, v)) if p(x,
V) = 2 p(t.e,, V) is asum of orthogona family of simple projections from
P. Hence we can prove (6) for p(x, v) € P where x has a continuous spectrum
on (c, ), where ¢ = inf{ (xk, k), k € SN e,H}. In addition, if N isavon
Neumann algebra of type |, we can assume that p(x, v) is an Abelian
projection (i.e., F, is an Abelian projection). Let p(x,, v) be the sequence
from Corollary 2.

(i) Let N be a WrJ-algebra of type I1.. and let {r,,} be the sequence
from Lemma 11. By Lemma 11, the restriction of w onto{p € P. p =r,}
is the finite measure. The W*J-algebra r N, acting in r,H has the infinite
type. Using this and Theorem 2.1 (Matvejchuk, 1997), we conclude that the
restriction of w on any WPJ-subfactor £ C r, N1, of type |, is a regular
measure. Let p(x, v) € P, p(x, V) = ry. By step 1, p(p(Xa, V)) = R(p(Xn,
V). By Lemma 12,

w(p(x V) = lim p(p(xa, V)) = lim Rp(p(xa, v)) = Rb(p(x, v))

It is clear that in the general case p e P there exists a sequence { p,} C P
such that p, = r, and p, t p. This means that (6) holds.

(ii) Now let N' be a W*J-algebra of type I... Let p(x, V) € P be an
Abelian projection. For an Abelianf e 11, 7(f) < +oo there exists a sequence
{ f.} C II such that f,| f and sup{|w(p(X, V))|: p(X, V) € P,, Fx = f} < oo,
Om e N.

Letf = F,. Fix m € N. By step 1 and by Lemma 12,

(X, Vi) = 1M (P00 fm, Vi)
lim Rd(p(xn fm, Vi)

RU( P, V)

Finally,

w(p(x, V) = 1im p(p(Xim, Vi)

lim Nb( pxfm, Vi) = Ni(p(x, V)

It is clear that (6) in the general case of F, istrue, dso QED
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5. SOME PROPOSITIONS ON BOUNDEDNESS OF MEASURES

We prove that the boundedness of a measure essentially depends on the
dimension of H. Let dim H < 4+, Consider a measure w(p) = Ntr(Ap),
Op e P, where A # \l, and let m be a discontinuous endomorphism of the
additive group of the real numbers. Then me . is an unbounded (and hence
nonregular) measure on P.

Proposition 14. Let v: P - R be a bounded measure on B(H), dim H
= 3. Thenfor any x e Sy therestriction of v onto P. ,, isaregular measure.

Proof. Fix X, y, Z € Sy, (X, ¥) = (Y, 2 = (z X) = 0. By Theorem 2.3
(Matvejchuk, 1997), there exist unique J-self-adjoint in %, . trace class
operator A, and unique number ¢, such that

v(p) = tr(Ap) + ¢ dimp,H, [Op e Py«
(Note that
v(p) = tr(Axp) — cdimp_H, 0Op € Py dimpH < +o

Here A, = A, + ¢ . Note also that 0 = dim p,H = 1, Op € P 4.

Thus if we prove that ¢, = 0, the assertion follows. By analogy, there
exist unique J-self-adjoint operators A, and A, in %y, and ¥, .,),, respectively,
and unique numbers ¢, ¢, such that

v(p) = tr(A)p) — ¢, dimp_H, Op € Py, dimpH < +o
v(p) = tr(A,p) — c,dimp_H, Op e Py, dimpH < +o
It is clear that
Pyy:=1{pr € P: g, fx € {AX} U {By}\gert C Prx N Py
Let py € Py, Then
tr(Acpy) + cdim(p)H = v(p) = tr(Aypy) — ¢, dim(py)-H

Here (py). is the positive part of p; in Py, and (py)- is the negative
part of prin Pey,y. But pr € Py, < pr € Py« Thus

tr((A — AJpy) = (& + ¢) dim(py).H (7)

1. The right of (7) is a discontinuous bounded function on P, , if ¢, +
¢, # 0.

Denote by e the projection (-, X)x + (-, Y)y.

2(%i). If e(Ay — A)e = \e, then tr((A, — AYp) = N, Opr € Py,

2(ii). If e(A) — A)e# \e, O\ € R, then pr - tr((A, — A)py) is an
unbounded function on Py .
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By 1, 2(i) and 2(ii), we have ¢, + ¢, = 0 and &(A, — A))e = 0. This
means that ¢, = —c,. By analogy, ¢, = —c,.

By definition, Py, C Py, N P ,,. Let pr e Py,. Thenpr € P( ), <
pr € P 5. Hence

tr(Ajpy) + ccdim(py)-H = tr(A)p) — ¢, dim(py)-H = v(py)
= tr(A;py) — ¢, dim(py).H = tr(A,pr) + ccdim(p).H, Ops € Py,

Here (py). and (py)- are positive and negative parts of p; in P, respec-
tively. Thus

tr((Ay — AJp) = c(dim(p).H — dim(p)-H),  Opre Py, (8

We have again:

1. Theright of (8) is adiscontinuous bounded function on P, if ¢, # O.

Let us consider the left of (8). Now denote by e the projection (-, y)y
+ (-, 2z

2(i). If (A, — A)e = Nefor some N € R, N # O, then tr((A, — A)py)
=N, Upr € Py

2(ii). If (A, — A)e # Ne, 0N € R, then the function p; - tr((A, —
A)pr) is unbounded on Py ,.

By 1, 2(i), and 2(ii), we have (A, — A)e = 0 and ¢, = 0. The lemma
is proved.

Corollary 15. Let v: P - R be a bounded Hermitian measure on B(H),
dimH = 3. Then v(p) = NRtr(Ap), Op € P, where A is a J-rea self-adjoint
trace class operator such that v(p) = tr(Ap), Op e IL

Proof. By Corollary 3, it suffices to prove that v(py) = Rtr(Apy), Ops €
P. We remarked in the introduction that IT is isomorphic to the lattice of all
orthogonal projections on Hgy. Thus, by the boundedness of v on I, there
exists J-reality self-adjoint trace class operator A such that v(p) = tr(Ap),
Op e IL

Fix X, ¥y € Sy, (X, y) = 0. Let A, from the proof of Proposition 14 and
f = ax + iby, @ — b? = 1. Then

tr(Apr) = v(pr) = v(pf) = tr(Apr) = tr(Apy)

Thus we can assume that B := (p, + p)A( P« + py) is self-adjoint and J-
self-adjoint. This meansthat B = ap, + Bpy, where a = tr(Bp,) = v(p) =
tr(Ap,) and B = v(py). Finaly,
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v(pr) = tr(Apy) = tr(Bpy) = (Bf, Jf)
= R(Af, If) = Rtr(Ap), Opr e P
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