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Let } be a real semifinite W*-algebra of J-real operators containing no finite
central summand in a complex Hilbert space H with conjugation J. Denote by
P the quantum logic of all J-orthogonal projections in the von Neumann algebra
1 5 } 1 i}. Let m: P → R be a Hermitian measure. It is shown that there
exists an unique J-self-adjoint ultraweakly continuous linear functional c on 1
such that m( p) 5 Rc( p), ∀p P P.

1. INTRODUCTION

In this paper we continue the description of measures on logics of
projections in Hilbert spaces with conjugation (Matvejchuk, 1998).

Let H be a complex Hilbert space with the inner product (?, ?). We will
denote by S the unit sphere in H. Let J be an operator of conjugation in H
[i.e., J 2 5 I; (Jx, Jy) 5 ( y, x), J(lx 1 by) 5 lJx 1 bJy, ∀x, y P H, ∀l,
b P C ]. A vector x P H is said to be J-real if Jx 5 x. The vectors xR 5
1/2(x 1 Jx) and xI :5 1/2i(x 2 Jx) [5 21/2(ix 1 J ix)] are J-real, ∀x P
H, and x 5 xR 1 ixI The set HR of all J-real vectors is a real Hilbert space
with respect to the inner product (?, ?). Let SR denote the set S ù HR. Put
^x, y& :5 (Jx, y). Let B P B(H ). The operator B0 P B(H ) such that ^Bx, y& 5
^x, B0y&, ∀x, y P H, is called a J-adjoint. It is clear that B0 5 JB*J [5 (JBJ )*],
(BA)0 5 A0B0, and A P B(H ) is J-selfadjoint ⇔ A 5 JA*J. An operator A P
B(H ) is said to be J-real if JAJ 5 A. Note that AJR :5 1/2(A 1 JAJ ) and
AJI :5 1/2i(A 2 JAJ ) are J-real operators and A 5 AJR 1 iAJI.
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A von Neumann algebra 1 acting in H is called a W*J-algebra if 1 is
closed with respect to the J-adjunction (i.e., A, P 1 implies A0 P 1). A
weakly closed real *-algebra M , B(H ) with M ù iM 5 {0} is said to be
a real W*-algebra. If M is a real W*-algebra, then N :5 M 1 iM is a von
Neumann algebra. Let 1 be a W* J-algebra. It is evident that the set } of
all J-real operators in 1 is a real W*-algebra. B P 1 implies JBJ [5 (B0)*]
P 1. Hence BJR, BJI P 1 and 1 5 } 1 i}.

Let }s be the set of all self-adjoint operators in }. Then }s is a Jordan
algebra (5JW-algebra) with respect to the product A + B :5 1/2(AB 1 BA).
The }s has type I (II, III) ⇔ the von Neumann algebra 1 5 } 1 i} has
type I (II, III) (Ayupov, 1986).

Let P [5P(1)] denote the set of all J-self-adjoint (5 J-orthogonal)
projections (5 idempotents) from 1. With respect to the standard relations,
the ordering p # g ⇔ p 5 gp (5 pg) ⇔ pH # gH, and the orthocomplementa-
tion p → p' :5 I 2 p, the set P is a quantum logic. The set of all orthogonal
projections in P is denoted by P [ 5 P(1)]. It is clear that p P P is J-real
⇔ p P P. Hence P(B(H )) is isomorphic to the lattice of all orthogonal
projections on HR.

2. THE STRUCTURE OF THE PROJECTIONS FROM P

Let p P P; then p* P P. Let por be the orthogonal projection onto pH ù
p*H. Then por P P and por is the greatest orthogonal projection with the
properties por # p (Matvejchuk, 1998). A projection p P P is said to be
properly skew projection if por 5 0. Let p Þ p*. Then it is clear that p 2
por is the properly skew projection. Let 1or denote the set of all orthogonal
projections from 1.

Let p P P. The positive part of ( p 1 p*) will be denoted by ( p 1 p*)+,
and by e+ will be denote the orthogonal projection onto (p 1 p*)+H. Then
e+ pe+ 5 1–2 ( p 1 p*)+ (Matvejchuk, 1998). Put e2 :5 I 2 e+. Now, denote
by Fy the orthogonal projection onto yH, ∀y P B(H ).

We begin with an important formula on projections from P.

Proposition 1. Let 1 be a W*J-algebra, p P P, and let e2pe+ 5 w.e2pe+.
be the polar decomposition for e2pe+. Then x :5 e+pe+($e+) and v :5 (1/
i)w are J-real operators in 1, and

p 5 x 1 iv(x2 2 x)1/2 1 i(x2 2 x)1/2v* 2 v(x 2 Fx)v* (1)

Conversely, let x P 1 be an arbitrary J-real operator such that x $ Fx ,
and let v P 1 be a J-real partial isometry with the initial projection Fx and
the final (J-real) one e such that e ' Fx. Then (1) defines a projection in P.

For the proof see Matvejchuk (1998).
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To emphasize that p in (1) depends on x and v, we shall use the notation
p(x, v) as well. It is easily seen that |p(x, v)| 5 |2x 2 I| 5 2|x| 2 1. The
projection p(te, v), where t P R and e P P, is said to be a simple projection.
Let Sp :5 Fx 1 Fv , ∀p 5 p(x, v) P P. Let us denote by Pb the set {p(x, v)
P P: |p(x, v)| # b}. Let x 5 * ldel be the spectral representation for x (we
assume the function l → el to be right continuous). Put

xn :5 o
i$n

(i 1 1/2)
n

(e(i11)/n 2 ei/n) 1 (e1 2 e12) and

vi :5 v(e(i11)/n 2 ei/n)

Let us mention one consequence of the formula (1).

Corollary 2.

p(xn , v) 5 o
i$n

p1(i 1 1/2)
n

(e(i11)/n 2 ei/n), vi2 1 (e1 2 e12)

and lim |p(x, v) 2 p(xn , v)| 5 0.
Obviously, (?, x)y (Þ0) is a projection ⇔ (x, y) 5 1. Let (?, x)y (Þ0)

be a projection. A routine computation shows that:
1. (?, x)y P P(B(H )) ⇔ (?, x)y 5 (?, Jy*)y*, where y* 5 ( y, Jy)21/2y.
2. py :5 (?, Jy)y P P(B(H )) ⇔ ( yR, yI) 5 0 and |yR|2 2 |yI|2 5 1.
3. Let p P P(B(H )), p Þ 0. Then (?, Jy*)y* # p, ∀y P pH: |yR| Þ |yI|.

Corollary 3. The logic P(B(H )) is atomistic.

Remark 4. (i) Let p 5 p(x, v) P Pb be a properly skew projection, f P
1or, and f # Fp. Then there exists g 5 g(z, w) P Pb such that Fz # Fx , Fg 5
f, g # p.

(ii) Let p P II, f P 1or, and f # p. Then there exists a properly skew
projection g P P such that Fg 5 f, g # P ⇔ there exists f0 P II, f0 # p,
such that 1–2 f0 , f0 ff0 and v*v # p 2 f0, where v is the partial isometry from
the polar representation f '

0 ff0 5 v. f '
0 ff0..

Proof. (i) Let f # Fp , f P II. Then JfJ # JFpJ. Let f 1 JfJ 5
* lel be the spectral representation for f 1 JfJ. Put e+ :5 I 2 e1 and e2 :5
I 2 e+. Let e2 fe+ 5 wo.e2 fe+. be the polar representation for e2fe+. Then
v0 5 (1/i)wo is a J-reality partial isometry. In addition, e+ fe+ 5 e+JfJe+, yo

:5 e+ fe+ is a J-real operator, and yo . 1–2 e+. Put xo 5 yo(2yo 2 I )21 and g 5
p(xo , vo). Then g is the suitable projection.

Lemma 5. Let 1 be a countably decomposable von Neumann algebra
and let f be a faithful normal state on 1. Let p 5 p(x, v) P Pb be such that
the spectrum of x is continuous in (c, 1`), where c 5 inf{(xk, k): k P S ù
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e+H}. Then for any natural m there exists a mutually orthogonal family
{pi}m

1 , Pb such that p 5 ( pi and f(Spi) 5 (1/m) f(Sp), ∀i.

Proof. Let x 5 * ldel be the spectral representation for x again. By the
assumption on x, the function f(e l 1 velv*) is continuous on (c, 1`). Hence
there exists {ei}m

1 , II with the properties: (i) (m
1 ei 5 Fx, (ii) ei x 5 xei , ∀i,

(iii) f(ei 1 vei v*) 5 (1/m)f(Sp), ∀i. By the construction, {p(xei , vei)}m
1 is

a suitable family.

Remark 6. Let 1 be a countably decomposable continuous von Neumann
algebra. Then assesion of Lemma 5 is true for any p P P.

3. INDEFINITE METRIC SUBSPACES IN H

Let e P II (0 , e , I ). The set *e :5 eH R % ie' HR is a real Hilbert
space with respect to the product (?, ?) and H 5 *e 1 i*e. Let J denote the
restriction of J to *e. Clearly J 5 (e 2 e')/*e and J is a symmetry (i.e.,
J 2 5 I, J 5 J* in *e. Consequently, we have:

Every b P B(*e) can be uniquely extended to a bounded linear operator
bH on H, (bH)* 5 (b*)H , and if p is a bounded projection on *e , then pH is
a bounded projection, too. In addition, if a projection p is J-self-adjoint, then
pH is J-self-adjoint. Conversely, if q P P and q*e # *e , then q/*e is a J-
self-adjoint projection.

With respect to the product [x, y] :5 (Jx, y), ∀x, y P *e , the set *e is
a real indefinite metric space and J is a canonical symmetry with respect to
the canonical decomposition *e 5 *1

e [1̇]*2
e , where *1

e :5 eHR and *2
e

:5 ie' HR (Azizov and Iokhvidov, 1989).
Let p 5 p(x, v) P P. Put e 5 Fx and J1 5 p 2 p' (52p 2 I ). According

to the theory developed in Azizov and Iokhvidov (1989), the restriction of
J1 to *e (with [?, ?]) is the canonical symmetry with respect to the canonical
decomposition *e 5 p*e [1̇] p'*e.

Let } be a real W*-algebra of J-real operators. Let us denote by 1e

[51e(})] the set {B P (} 1 i}): B*e # *e}. Obviously 1e is a real
closed in the strong operator topology *-algebra. In addition, B P 1e implies
B0 P 1e. 1e is a W*J-algebra in the real indefinite metric space *e. Put Pe

:5 P ù 1e. Clearly, Pe is a quantum sublogic of P. The logic Pe is called a
hyperbolic logic.

Let us denote by P1
e (P2

e ) the set of all p P Pe for which the subspace
p*e is positive (i.e., ∀z P p*e , p Þ 0, [z, z] . 0), respectively, negative
(i.e., ∀z P p*e , z Þ 0, [z, z] , 0). We will denote by P6

e the set P1
e or

P2
e . Note that p P P1

e ⇔ Jp $ 0 on *e and p P P2
e ⇔ Jp # 0. For

instance, p(x, v) P P1
Fe and p(x, v) P P2

F'
x . Let 1 5 B(H ). Then the projection

py 5 (?, Jy)y P P1
e [(?, Jy)y P P2

e ] ⇔ yR P eHR and yI P e'HR ⇔ yR P



Measures in Hilbert Spaces with Conjugation 781

e'HR and yI P eHR). Every projection (Azizov and Iokhvidov, 1989) p P
Pe is representable (not unique!) in the form p 5 p+ 1 p2, where p6 P p6

e .

Some Propositions on Projections in an Indefinite Metric Space

Let * be a Hilbert space (real or complex) with respect to the Hilbert
product (?, ?). Let Q+ (0 , Q+ , I ) be an orthogonal projection on * and
7 :5 2Q+ 2 I, Q2 :5 I 2 Q+. Fix the product [x, y] :5 (7x, y). ∀x, y P
*. * is an indefinite metric space with the inidefinite metric [?, ?] and with
the canonical symmetry 7. A W*-algebra A (probably real) acting in * is
called a W*7-algebra if 7 P A. A W*7-algebra A is said to be a W*K-
algebra if projections Q+ and Q2 are infinite with respect to A. Let 3
(3+, 32) denote the set of all 7-self-adjoint (positive, negative) projections
from A.

Let Q1
1 be a maximal positive projection (Azizov and Iokhvidov, 1989)

and 71 :5 2Q1
1 2 I. Put (x, y)1 :5 [71x, y] ∀x, y P *. By the definition,

771 ($0) is an invertible operator. Hence there exist a, b P R such that
al # 771 # bI. This means that

a(x, x) # (771x, x) 5 (x, x)1 # b(x, x), ∀x P * (2)

Also we have

.(x, x) 2 (x, x)1. 5 .((I 2 771)x, x). # |I 2 771| |x|2 (3)

5 |7 2 71| |x|2 5 2|Q+ 2 Q1
1 | |x|2, ∀x P *

Let p P 3+, x 5 Q+pQ+, and Q2pQ+ 5 w.Q2pQ+. be the polar decomposi-
tion for Q2pQ+. The formula

p 5 x 1 w(x2 2 x)1/2 2 (x2 2 x)1/2 w* 2 w(x 2 Fx)w*

is an indefinite analogy for (1) with a similar proof.
Assume that p P 3+ is a simple projection in * with product (?, ?)1,

i.e., p 5 te 1 (t2 2 t)1/2(w 2 w*) 2 (t 2 1)ww*; here t . 1, e # Q1
1 , and

w is a partial isometry with the initial projection e and final one Fw , Fw #
I 2 Q1

1 in * with (?, ?)1. It is clear that pe 2 te 5 (t2 2 t)1/2 w, ep 2 te 5
2(t2 2 t)1/2w*. Hence we may identify the minimal real 0-algebra }(e, p)
generated by e and p with M2(R) (5 the algebra of two-by-two real matrices).
The algebra }(e, p) is called a W 07-factor of type I2.

Let e, f P A be orthogonal projections. We write e a f if there exists
a partial isometry w P A with the initial projection e and the final one Fw #
f. We denote by ep the orthogonal projection onto Q+pH, p P 3.

The following result will be needed in Section 4.

Lemma 7. Let pn P 3+ and epn a Q2 ∧ (Fpn ∨ epn)
'. Then there exists

a simple projection gn P 3+ such that:
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1. epn 5 egn, |egn 2 gn| # |epn 2 pn|.
2. Let Q1

1 P 3 be a maximal positive projection such that pn # Q1
1 ,

and let 71 :5 2Q1
1 2 I. In * with the Hilbert product (?, ?)1 :5

(71 ?, ?) the projection gn is simple and Q1
1 gn* 5 pn*, |gn 2 pn|1

# |epn 2 pn|.

Proof. We need the index n in pn , gn only in the proof of Lemma 12.
Hence we do not used the index n in the proof below.

Let p 5 (:5 pn) 5 p(x, v) and a :5 1–2 (|p| 1 1) (5 |x|). It is clear that
ep , x # aep. One can suppose that Q+* ù p* 5 0. Put

y0 :5 (a 2 1)21 (x 2 ep) {a1/2I 1 [aep 2(x 2 ep)]1/2}22

Thus 0 , y0 # ep. By the assumption, there exists a partial isometry w P
A with the initial projection vv* and the final one Fw # Q2 ∧ (Fp ∨ ep)'. Let

z :5 vy1/2
0 v* 1 w(Fv 2 vy1/2

0 v*)1/2 [5 vy1/2
0 v* 1 wv(ep 2 y0)1/2v*]

It can be easily shown that z is a partial isometry with the initial projection
vv* 5 Fv . By the construction, g :5 p(aep , zv) is a simple projection, eg 5
ep and |eg 2 g| 5 |ep 2 p|. The operator y1/2

0 is a solution of the equation

a(x 2 ep)1/2 5 2[a(a 2 1)]1/2y1/2 2 (a 2 1)(x 2 ep)1/2y

Making use of this, we can verify that

pgp 5 p(x, v)p(aep , zv)p(x, v) 5 ap(x, v) (4)

By (2), the new Hilbert product (x, y)1 :5 [71x, y] is equivalent to (?, ?)
in *. By (4), p(aep , zv) is simple in * with (?, ?)1. By the construction, |p
2 g|1 5 |ep 2 p|. The lemma is proved.

4. MEASURES ON THE LOGIC P

Let ( pi)iPI , P be a set of mutually orthogonal projections. Assume
that for every subset X # I there exists q 5 (iPX pi (the sum being understood
in the strong sense). Then a representation p 5 (iPI pi is said to be a
decomposition of p. Since p* 5 JpJ, ∀p P P, we conclude that p* 5 (iPI

p*i is a decomposition of p* if p 5 (iPI pi is a decomposition of p.
A mapping m: P → R is said to be a measure (5quantum measure) if

m( p) 5 ( m( pi) for any decomposition p 5 ( pi. Note that if m is a measure,
then m*: P → R, where m*( p) :5 m( p*), ∀p P P, is a measure also.

Let ,.m.,b(e) :5 sup{.m(g).: g P Pb, g # e}, b $ 1, e P P, and let
ab

f(e) :5 sup{.m( p).(f(Sp))21: p P Pb, p # e}, b $ 1, e P P, where f is
a faithful normal semifinite weight on 1+.
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A measure m is said to be bounded if sup{|p|21.m( p).: p P P, p Þ 0}
, 1`; f-bounded if ab

f(I ) , 1`, ∀b $ 1; finite if ,.m.,b(I ) , 1`, ∀b $
1; Hermitian if m( p) 5 m( p*), ∀p P P; skew Hermitian if m( p) 5 2m( p*),
∀p P P; regular if there exists an operator A such that m( p) 5 Rtr(Ap),
∀p P P. Note that a measure m is the sum m 5 1/2(m 1 m*) 1 1/2(m 2
m*) of Hermitian and skew Hermitian measures.

A trivial computation on two-dimensional matrices shows that the fol-
lowing lemma is true.

Lemma 8. Let mn (?) 5 tr(An?) be a family of measures in an indefinite
metric space K, dim K 5 2, with a canonical symmetry 7. Assume ac :5
sup{.mn( p).: n P N, |p| # c} , 1`. Then for any e . 0 there exists d P
(0, 1) such that pf P P6, |pf | , 1 1 d implies supn{.mn(Q6) 2 mn( pf).} ,
e. Here Q6 5 (1/2)(I 6 7).

Lemma 9. Let 1 be a semifinite von Neumann algebra and let t be a
faithful normal semifinite trace on 1+. If n is a t-bounded measure, then n
is a finite measure:

Proof. First we consider the restriction of n on P1 (5 P). If 1 is a finite
von Neumann algebra, then it is clear that a1

t(I ) , 1`.
Let 1 be a properly infinite von Neumann algebra. Dorofeev (1992)

proved that any measure m: P8 → R on the set of all orthogonal projections
P8 from a von Neumann algebra containing no finite central summands of
type I is bounded, i.e., sup{.m( p).: p P P8} , 1`. It is easily to show by
analogy that the measure n on the set of all (orthogonal) projections from
JW-algebra } containing no finite central summand of type I is bounded also.

Let now b . 1. It is clear that there exists e P P such that t(e) , 1`
and .,n,.b(e') , 1`. Let p 5 p(x, v) P Pb. Without loss of generality we
can assume that p is a properly skew projection.

Let f :5 Fp ∧ e'. By Remark 4(i), there exists g P Pb such that Fg 5
f (and hence g # p). By the construction of projections from P, g # e'. By
the choice of f, we have t( p 2 q) 5 t(Fp 2 f ) # t(e). Thus

.n( p). # .n(g). 1 .n( p 2 g). # .,n,.b(e') 1 2a2bt(e)

The proof is complete.

Lemma 10. Let 1 be continuous, countably decomposable von Neumann
algebra and let n: P → R be a measure. For any b $ 1 there exists a sequence
{en} , P, en → I in the strong operator topology such that .,n,.b(en) , 1`, ∀n.

Proof. Let f be a faithful normal state on 1. We can assume that .,n,.b(I )
5 `. Then there exists p 5 p(x, v) P Pb such that .n( p). $ 2n. Let {pi}m

1 ,
where m 5 2n, be a family from Lemma 5. By the construction, f(Spi) #
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22n, ∀i. It is clear that there exists pi (without loss of generality we can
assume pi 5 pn) such that .n( pn). $ 1.

Let .,n,.b(I 2 Spn) 5 `. By analogy, there exists pn11 P Pb, pn11 # I 2
Spn such that .n( pn11). $ 1 and f(Spn11) # 22(n11).

We shall continue this process. Let us suppose for the moment that there
exists a countable family {pi}`

n . Then by the construction, there exists
(`

n pi P Pb and at the same time .n( pi). $ 1, ∀i. This is a contradiction with
the definition of a measure. Therefore there exists a finite family {pi}k

n. Put
en :5 I 2 (k

n Spi. Then f(en) $ 1 2 (`
n 22i and .,n,.b(en) , 1`. We obtain

a suitable family, which completes the proof of Lemma 10.

We are thus led to the following strengthening of Lemma 10.

Lemma 11. Let 1 be a W*J-algebra of type II. Then there exists a
sequence {rn} , P, rn ↑ I, such that t(r '

n ) ↓ 0 and ab
t (rn) , 1`, .|n|.b(rn)

, 1`, ∀b and ∀n.

Proof. There exists a unique self-adjoint J-reality operator A P L1(1,
t) such that n(e) 5 t(A + e), ∀e P P . Let A 5 * ldfl be the spectral
representation for A and let f n :5 fn 2 f2n. Let M(t, e) (e P P , t . 0) denote
a maximal set {gi} P Pb, gi # e, with mutually orthogonal projections
{Sgi} such that n(gi) . tr(Sgi).

1. Suppose for the moment that ab
t ( f n 2 (( Sgi: gi P M(t, f n)) . t 1

n. Then .n( p)./t(Sp) . t 1 n, for some p # f n 2 (( Sgi: gi P M(t, f n)).
(i) If n( p) . 0, then p P M(t, f n). This is a contradiction with the

maximality of M(t, f n).
(ii) Let n( p) , 0. We have

n( p) 1 n(Sp 2 p) 5 n(Sp) and .n(Sp).t(Sp)21 # n

Hence

n(Sp 2 p)

t(Sp)
5

n(Sp)

t(Sp)
2

n(p)
t(Sp)

.
n(Sp)

t(Sp)
1 t 1 n $ t

In this case Sp 2 p P M(t, f n). We have a contradiction with the
maximality of M(t, f n) again.

Thus

ab
t ( f n 2 (o Sgi: gi P M(t, f n)) # t 1 n (5)

2. Fix e . 0. Let us demonstrate that there exists t such that t(( Sgi: gi

P M(t, f n)) , e. Let m1 P N be such that m22
1 , e. Then

(11) t(o Sgi: gi P M(m3
1, f n)) , e

or
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(21) t(o Sgi: gi P M(m3
1, f n)) $ e

If (11), then (5), where t 5 m3
1.

If (21), then there exists p1 P Pb such that p1 # f n, n( p1) $ m1, and
t(Sp1) # m22

1 , e. Let e1 :5 Sp1 and let m2 P N be such that m22
2 , e1 :5

e 2 m22
1 . Then

(12) t(o Sgi: gi P M(m3
2, f n 2 e1)) , e1

or

(22) t(o Sgi: gi P M(m3
2, f n 2 e1)) $ e1

again.
If (12), then

ab
t ( fn 2 e1 2 (o Sgi: gi P M(m3

2, f n 2 e1))) # m3
2 1 n

and

t((o Sgi: gi P M(m3
2, f n 2 e1)) 1 e1) , e1 1 m22

1 , e

If (22), then there exists p2 P Pb such that p2 # f n 2 e1, n( p2) $ m2,
and t(Sp2) # m22

2 .
If we continue this process, then the process (2n) stops at some step k.

Otherwise we have the sequence {pn}`
1 P Pb of mutually orthogonal projec-

tions with the property n( pn) . mn and p :5 ( pn P Pb, contradicting the
definition of the measure.

Thus the inequality

(1k) t((o Sgi: gi P M(m3
k, f n 2 e1 2 e2 2 ??? 2 ek21)) , ek21

is true. By the construction,

t((o Sgi: gi P M(m3
k, f n 2 e1 2 ??? 2 ek21)) 1 e1 1 ??? 1 ek21) , e

Hence for a given e 5 22n there exists en(b) P P with the properties
en(b) # f n, t(en(b)) , 22n, and ab

t ( f n 2 en(b)) , 1`. Let nk be such that
t(I 2 f nk) , 22k. Let b 5 m. By Lemma 9, the sequence rn :5
∧m$n( f nm 2 enm(m)) is suitable.

Let p(x, v) P Pb. Put Pb
x,v 5 {p(xo , vo) P Pb: Fxo # Fx}.

Lemma 12. Let 1 be a W*J-algebra containing no central summand of
type I2. Let the projection p(x, v) and a measure n be such that:

(i) sup{.n( p(xo , vo)).: p(xo , vo) P Pb
x,v} , 1`, ∀b $ 1.

(ii) The restriction of n on any W07-subfactor of type I2 is a regular
measure.
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Then n( p(x, v)) 5 lim n( p(xn , v)), ∀p(x, v) P P. Here p(xn , v) is the
sequence from Corollary 2.

Proof. Let p :5 p(x, v) P P. Put e :5 Fx. Let *e be the Hilbert space,
1e be the algebra, [?, ?] be the indefinite metric, and the logic Pe be as in
Section 3. By the construction, p(x, v) and p(xn , v) (P Pe) are maximal
positive projections. Let (x, y)0 :5 [(2p(x, v) 2 I )x, y] be a new Hilbert
product in *e. With respect to the (?, ?)0 the operator p(x, v) is an orthogonal
projection. Let Q+ :5 p(x, v), and Q2 :5 I 2 Q+, and pn :5 p(xn , v).

1. Let first the pair ( p, pn) ∀n be such that epn a Q2 ∧ (Fpn ∨ epn)
' in

*e with (?, ?)0. [By the definition of Q+ and p(xn , v), we have epn 5 Q+ in
*e with (?, ?)0.] Let gn be the projection from Lemma 7. By the construction
of *e , we have pn , gn P Pb

x,v ∀n P N, and some b . 1. By the construction
again, the minimal 20 algebras 1( p, gn) and 1( pn , gn) generated by p, gn

and pn , gn , are W07-factors of type I2.
By the assumption, the restriction of n on 1( p, gn) and on 1( pn , gn) is

a regular measure. Let us identify 1( p, gn) and 1( pn , gn) with the algebra
M2(R) of all two-by-two real matrices so that gn corresponds to 4+ 5 (1

0
0
0).

This generates a family mn of regular measures on M2(R). By (i), the sequence
mn satisfies the assumption of Lemma 8. By the construction, |p 2 gn| → 0
and |gn 2 pn| → 0 (n → `). By Lemma 8, for a given e . 0 there exists
N(e) such that n . N(e) implies

.n( p) 2 n( pn). # .n( p) 2 n(gn). 1 .n(gn) 2 n( pn). , e

2. In the general case there exist decompositions p 5 p1 1 p2 1 p3 and
pn 5 p1

n 1 p2
n 1 p3

n such that |pi 2 pi
n|n→` → 0 and the pair ( pi , pi

n) (i 5 1,
2, 3) satisfies step 1. Thus

n( p) 5 o
3

1
n( pi) 5 o

3

1
lim n( pi

n) 5 lim n( pn)

We can now prove our main result.

Theorem 13. Let } be a real W*-algebra of J-real bounded operators
containing no finite central summand in a complex Hilbert space H with
conjugation J and let P be the quantum logic of all J-orthogonal projections
in the von Heumann algebra 1 5 } 1 i}. Let m: P → R be a Hermitian
measure. Then

m( p) 5 Rc( p), ∀p P P (6)

where c is a J-self-adjoint ultraweakly continuous linear functional on 1
such that m( p) 5 c( p), ∀p P P .

Proof. The proof will consist of several steps.
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1. First suppose that } is the set B(R(H ) of all J-real bounded operator
in H, dim H 5 1`. By Dorofeev and Sherstnev (1990), any measure on the
set of all orthogonal projections in an infinite-dimensional Hilbert space is
bounded. It is easy to see that any bounded measure is regular. The set II is
isomorphic to the set of all orthogonal projections on HR. Hence for the
restriction of m to P , there exists a unique J-real self-adjoint trace class
operator A such that m( p) 5 tr( p), ∀p P P .

By Corollary 3 again, it suffices to prove the equality m( pf) 5 Rtr(Apf)
for any one-dimensional projection pf P P, where f 5 cRw 1 icIw', cR , cI P
R, c2

R 2 c2
I 5 1, w, w' P SR, and (w, w') 5 0. There exists e P P such that

pw # e, dim eH 5 1`, pw' # e', and dim e'H 5 1`. Let me( p) :5 m( pH),
∀p P Pe. It is clear that me is a measure on Pe. By Theorem 2.1 (Matvejchuk,
1997), there exists a unique trace class operator B P B(*e), J-self-adjoint
in *e , such that me( p) 5 tr*e(Bp), ∀p P Pe. Since tr*e(Bp) 5 m( p) P R, it
follows that

tr*e(Bp) 5 tr*e(Bp*) 5 tr*e((Bp*)*) 5 tr*e(B*p)

Hence me( p) 5 tr*e(
1–2 (B 1 B*)p), ∀p P Pe. Thus we can assume that B is

self-adjoint in *e and J-self-adjoint, i.e., B 5 JBJ. This means that B 5
eBe 1 e'Be'. We have

m( pf) 5 me( pf) 5 tr(Bpj) 5 (Bf, Jf )

Put Bw :5 ( pw 1 pw')B( pw 1 pw'). Then Bw 5 m( pw)pw 1 m( pw')pw' is the
spectral decomposition for Bw. It is obvious that

m( pw) 5 tr(Apw) 5 a.(w, k).2 1 b.(w, k').2

and

m( pw') 5 a.(w', k).2 1 b.(w', k').2

for some k, k' P HR, (k, k') 5 0, a, b $ 0.
Then

m( pf) 5 tr(Bpf) 5 (Bf, Jf ) 5 m( pw)( pw f, Jf ) 1 m( pw')( pw' f, Jf )

5 m( pw)(cRw, Jf ) 1 m( pw')(icIw', Jf ) 5 m( pw)c2
R 2 m( pw')c2

I

5 [a.(w, k).2 1 b.(w, k').2]c2
R 2 [a.(w', k).2 1 b.(w', k').2]c2

I

5 a(.(w, k).2c2
R 2 .(w', k).2c2

I ) 1 b(.(w, k').2c2
R 2 .(w', w').2c2

I )

5 R(a( f, k)(k, Jf ) 1 b( f, k')(k', Jf )) 5 Rtr(Apf)

2. Now without loss of generality we can assume that } contains no
central summands of factor type I`.
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In the proof of Lemma 9 we remarked that sup{.m( p).: p P P} , 1`.
In Matvejchuk (1995) it was proved that a bounded measure on the set of
all projections from a JW-algebra containing no central summand of type I2

continued to a linear functional on the JW-algebra. This means that there
exists a J-self-adjoint ultraweakly continuous linear functional c such that
m( p) 5 c( p), ∀p P P. By step 1, we have m( p(x, v)) 5 Rc( p(x, v)) if p(x,
v) 5 ( p(tnen , v) is a sum of orthogonal family of simple projections from
P. Hence we can prove (6) for p(x, v) P P where x has a continuous spectrum
on (c, `), where c 5 inf{(xk, k), k P S ù e+H}. In addition, if 1 is a von
Neumann algebra of type I`, we can assume that p(x, v) is an Abelian
projection (i.e., Fp is an Abelian projection). Let p(xn , v) be the sequence
from Corollary 2.

(i) Let 1 be a W*J-algebra of type P` and let {rn} be the sequence
from Lemma 11. By Lemma 11, the restriction of m onto {p P P: p # rn}
is the finite measure. The W*J-algebra rn1rn acting in rn H has the infinite
type. Using this and Theorem 2.1 (Matvejchuk, 1997), we conclude that the
restriction of m on any W0J-subfactor + , rn1rn of type I2 is a regular
measure. Let p(x, v) P P, p(x, v) # rn. By step 1, m( p(xn , v)) 5 Rc( p(xn ,
v)). By Lemma 12,

m( p(x, v)) 5 lim m( p(xn , v)) 5 lim Rc( p(xn , v)) 5 Rc( p(x, v))

It is clear that in the general case p P P there exists a sequence {pn} , P
such that pn # rn and pn ↑ p. This means that (6) holds.

(ii) Now let 1 be a W*J-algebra of type I`. Let p(x, v) P P be an
Abelian projection. For an Abelian f P P, t( f ) , 1` there exists a sequence
{ fm} , P such that fm. f and sup{.m( p(x, v)).: p(x, v) P Pa, Fx # fm} , `,
∀m P N.

Let f 5 Fx. Fix m P N. By step 1 and by Lemma 12,

m( p(xfm , vfm)) 5 lim
n→`

m( p(xn fm , vfm))

5 lim
n→`

Rc( p(xn fm , vfm))

5 Rc( p(xfm , vfm))

Finally,

m( p(x, v)) 5 lim
m→`

m( p(xfm , vfm))

5 lim
m→`

Rc( p(xfm , vfm)) 5 Rc( p(x, v))

It is clear that (6) in the general case of Fx is true, also QED
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5. SOME PROPOSITIONS ON BOUNDEDNESS OF MEASURES

We prove that the boundedness of a measure essentially depends on the
dimension of H. Let dim H , 1`. Consider a measure m( p) 5 Rtr(Ap),
∀p P P, where A Þ lI, and let m be a discontinuous endomorphism of the
additive group of the real numbers. Then m + m is an unbounded (and hence
nonregular) measure on P.

Proposition 14. Let n: P → R be a bounded measure on B(H ), dim H
$ 3. Then for any x P SR the restriction of n onto P(?,x)x is a regular measure.

Proof. Fix x, y, z P SR, (x, y) 5 ( y, z) 5 (z, x) 5 0. By Theorem 2.3
(Matvejchuk, 1997), there exist unique J-self-adjoint in *(?, x)x trace class
operator A8x and unique number cx such that

n( p) 5 tr(A8xp) 1 cx dim p+H, ∀p P P(?,x)x

(Note that

n( p) 5 tr(Ax p) 2 cx dimp2H, ∀p P P(?,x)x dim pH , 1`

Here Ax 5 A8x 1 cx I. Note also that 0 # dim p+ H # 1, ∀p P P(?,x)x).
Thus if we prove that cx 5 0, the assertion follows. By analogy, there

exist unique J-self-adjoint operators Ay and Az in *(?y)y and *(?z)z, respectively,
and unique numbers cy , cz such that

n( p) 5 tr(Ay p) 2 cy dim p2H, ∀p P P(?,y)y, dim pH , 1`

n( p) 5 tr(Az p) 2 cz dim p2H, ∀p P P(?,z)z, dim pH , 1`

It is clear that

Px,y :5 {pf P P: fR, fT P {lx} ø {by}l,bPR} , P(?,x)x ù P(?,y)y

Let pf P Px,y. Then

tr(A8x pf) 1 cx dim( pf)+H 5 v( pf) 5 tr(Ay pf) 2 cy dim( pf)2H

Here ( pf)+ is the positive part of pf in P(?x)x and ( pf)2 is the negative
part of pf in P(?y)y . But pf P P2

(?,y)y ⇔ pf P P1
(?,x)x. Thus

tr((Ay 2 A8x)pf) 5 (cx 1 cy) dim( pf)+H (7)

1. The right of (7) is a discontinuous bounded function on Px,y if cx 1
cy Þ 0.

Denote by e the projection (?, x)x 1 (?, y)y.
2(i). If e(Ay 2 A8x)e 5 le, then tr((Ay 2 A8x)pf) 5 l, ∀pf P Px,y.
2(ii). If e(Ay 2 A8x)e Þ le, ∀l P R, then pf → tr((Ay 2 A8x)pf) is an

unbounded function on Px,y .
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By 1, 2(i) and 2(ii), we have cx 1 cy 5 0 and e(Ay 2 A8x)e 5 0. This
means that cy 5 2cx . By analogy, cz 5 2cx .

By definition, Py,z , P(?,y)y ù P(?,z)z . Let pf P Py,z . Then pf P P1
(?,y)y ⇔

pf P P2
(?,z)z . Hence

tr(Ay pf) 1 cx dim( pf)2H 5 tr(Ay pf) 2 cy dim( pf)2H 5 n( pf)

5 tr(Az pf) 2 cz dim( pf)+H 5 tr(Az pf) 1 cx dim( pf)+H, ∀pf P Py,z

Here ( pf)+ and ( pf)2 are positive and negative parts of pf in P(?,y)y , respec-
tively. Thus

tr((Ay 2 Az)pf) 5 cx(dim( pf)+H 2 dim( pf)2H ), ∀pf P Py,z (8)

We have again:
1. The right of (8) is a discontinuous bounded function on Py,z if cx Þ 0.
Let us consider the left of (8). Now denote by e the projection (?, y)y

1 (?, z)z.
2(i). If e(Ay 2 Az)e 5 le for some l P R, l Þ 0, then tr((Ay 2 Az)pf)

5 l, ∀pf P Px,z.
2(ii). If e(Ay 2 Az)e Þ le, ∀l P R, then the function pf → tr((Ay 2

Az)pf) is unbounded on Px,z.
By 1, 2(i), and 2(ii), we have e(Ay 2 Az)e 5 0 and cx 5 0. The lemma

is proved.

Corollary 15. Let n: P → R be a bounded Hermitian measure on B(H ),
dim H $ 3. Then n( p) 5 Rtr(Ap), ∀p P P, where A is a J-real self-adjoint
trace class operator such that n( p) 5 tr(Ap), ∀p P P.

Proof. By Corollary 3, it suffices to prove that n( pf) 5 Rtr(Apf), ∀pf P
P. We remarked in the introduction that P is isomorphic to the lattice of all
orthogonal projections on HR. Thus, by the boundedness of n on P, there
exists J-reality self-adjoint trace class operator A such that n( p) 5 tr(Ap),
∀p P P.

Fix x, y P SR, (x, y) 5 0. Let Ax from the proof of Proposition 14 and
f 5 ax 1 iby, a2 2 b2 5 1. Then

tr(Ax pf) 5 n( pf) 5 n( p*f ) 5 tr(Ax p*f ) 5 tr(A*x pf)

Thus we can assume that B :5 ( px 1 py)Ax( px 1 py) is self-adjoint and J-
self-adjoint. This means that B 5 apx 1 bpy , where a 5 tr(Bpx) 5 n( px) 5
tr(Apx) and b 5 n( py). Finally,
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n( pf ) 5 tr(Ax pf) 5 tr(Bpf) 5 (Bf, Jf )

5 R(Af, Jf ) 5 Rtr(Apf), ∀pf P P
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